首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Normal Ca2+ signalling in skeletal muscle depends on the membrane associated proteins triadin and junctin and their ability to mediate functional interactions between the Ca2+ binding protein calsequestrin and the type 1 ryanodine receptor in the lumen of the sarcoplasmic reticulum. This important mechanism conserves intracellular Ca2+ stores, but is poorly understood. Triadin and junctin share similar structures and are lumped together in models of interactions between skeletal muscle calsequestrin and ryanodine receptors, however their individual roles have not been examined at a molecular level. We show here that purified skeletal ryanodine receptors are similarly activated by purified triadin or purified junctin added to their luminal side, although a lack of competition indicated that the proteins act at independent sites. Surprisingly, triadin and junctin differed markedly in their ability to transmit information between skeletal calsequestrin and ryanodine receptors. Purified calsequestrin inhibited junctin/triadin-associated, or junctin-associated, ryanodine receptors and the calsequestrin re-associated channel complexes were further inhibited when luminal Ca2+ fell from 1 mM to ≤100 μM, as seen with native channels (containing endogenous calsequestrin/triadin/junctin). In contrast, skeletal calsequestrin had no effect on the triadin/ryanodine receptor complex and the channel activity of this complex increased when luminal Ca2+ fell, as seen with purified channels prior to triadin/calsequestrin re-association. Therefore in this cell free system, junctin alone mediates signals between luminal Ca2+, skeletal calsequestrin and skeletal ryanodine receptors and may curtail resting Ca2+ leak from the sarcoplasmic reticulum. We suggest that triadin serves a different function which may dominate during excitation–contraction coupling.  相似文献   

2.
Wang Y  Li X  Duan H  Fulton TR  Eu JP  Meissner G 《Cell calcium》2009,45(1):29-37
Triadin and junctin are integral sarcoplasmic reticulum membrane proteins that form a macromolecular complex with the skeletal muscle ryanodine receptor (RyR1) but their roles in skeletal muscle calcium homeostasis remain incompletely understood. Here we report that delivery of siRNAs specific for triadin or junctin into C2C12 skeletal myoblasts reduced the expression of triadin and junctin in 8-day-old myotubes by 80 and 100%, respectively. Knocking down either triadin or junctin in these cells reduced Ca2+ release induced by depolarization (10mM KCl) by 20-25%. Unlike triadin knockdown myotubes, junctin knockdown and junctin/triadin double knockdown myotubes also had reduced Ca2+ release induced by 400 microM 4-chloro-m-cresol, 10mM caffeine, 400 microM UTP, or 1 microM thapsigargin. Thus, knocking down junctin compromised the Ca2+ stores in the sarcoplasmic reticulum of these cells. Our subsequent studies showed that in junctin knockdown myotubes at least two sarcoplasmic reticulum proteins (RyR1 and skeletal muscle calsequestrin) were down-regulated while these proteins' mRNA expression was not affected. The results suggest that triadin has a role in facilitating KCl depolarization-induced Ca2+ release in contrast to junctin which has a role in maintaining sarcoplasmic reticulum Ca2+ store size in C2C12 myotubes.  相似文献   

3.
As recently demonstrated by overlay assays using calsequestrin-peroxidase conjugates, the major 63 kDa Ca(2+)-binding protein of the sarcoplasmic reticulum forms complexes with itself, and with junctin (26 kDa), triadin (94 kDa) and the ryanodine receptor (560 kDa) [Glover, L., Culligan, K., Cala, S., Mulvey, C. & Ohlendieck, K. (2001) Biochim. Biophys. Acta1515, 120-132]. Here, we show that variations in the relative abundance of these four central elements of excitation-contraction coupling in different fiber types, and during chronic electrostimulation-induced fiber type transitions, are reflected by distinct alterations in the calsequestrin overlay binding patterns. Comparative immunoblotting with antibodies to markers of the junctional sarcoplasmic reticulum, in combination with the calsequestrin overlay binding patterns, confirmed a lower ryanodine receptor expression in slow soleus muscle compared to fast fibers, and revealed a drastic reduction of the RyR1 isoform in chronic low-frequency stimulated tibialis anterior muscle. The fast-to-slow transition process included a distinct reduction in fast calsequestrin and triadin and a concomitant reduction in calsequestrin binding to these sarcoplasmic reticulum elements. The calsequestrin-binding protein junctin was not affected by the muscle transformation process. The increase in calsequestrin and decrease in junctin expression during postnatal development resulted in similar changes in the intensity of binding of the calsequestrin conjugate to these sarcoplasmic reticulum components. Aged skeletal muscle fibers tended towards reduced protein interactions within the calsequestrin complex. This agrees with the physiological concept that the key regulators of Ca(2+) homeostasis exist in a supramolecular membrane assembly and that protein-protein interactions are affected by isoform shifting underlying the finely tuned adaptation of muscle fibers to changed functional demands.  相似文献   

4.
Calsequestrin, the major calcium sequestering protein in the sarcoplasmic reticulum of muscle, forms a quaternary complex with the ryanodine receptor calcium release channel and the intrinsic membrane proteins triadin and junctin. We have investigated the possibility that calsequestrin is a luminal calcium concentration sensor for the ryanodine receptor. We measured the luminal calcium concentration at which calsequestrin dissociates from the ryanodine receptor and the effect of calsequestrin on the response of the ryanodine receptor to changes in luminal calcium. We provide electrophysiological and biochemical evidence that: 1), luminal calcium concentration of >/=4 mM dissociates calsequestrin from junctional face membrane, whereas in the range of 1-3 mM calsequestrin remains attached; 2), the association with calsequestrin inhibits ryanodine receptor activity, but amplifies its response to changes in luminal calcium concentration; and 3), under physiological calcium conditions (1 mM), phosphorylation of calsequestrin does not alter its ability to inhibit native ryanodine receptor activity when the anchoring proteins triadin and junctin are present. These data suggest that the quaternary complex is intact in vivo, and provides further evidence that calsequestrin is involved in the sarcoplasmic reticulum calcium signaling pathway and has a role as a luminal calcium sensor for the ryanodine receptor.  相似文献   

5.
In mammalian striated muscles, ryanodine receptor (RyR), triadin, junctin, and calsequestrin form a quaternary complex in the lumen of sarcoplasmic reticulum. Such intermolecular interactions contribute not only to the passive buffering of sarcoplasmic reticulum luminal Ca2+, but also to the active Ca2+ release process during excitation-contraction coupling. Here we tested the hypothesis that specific charged amino acids within the luminal portion of RyR mediate its direct interaction with triadin. Using in vitro binding assay and site-directed mutagenesis, we found that the second intraluminal loop of the skeletal muscle RyR1 (amino acids 4860-4917), but not the first intraluminal loop of RyR1 (amino acids 4581-4640) could bind triadin. Specifically, three negatively charged residues Asp4878, Asp4907, and Glu4908 appear to be critical for the association with triadin. Using deletional approaches, we showed that a KEKE motif of triadin (amino acids 200-232) is essential for the binding to RyR1. Because the second intraluminal loop of RyR has been previously shown to contain the ion-conducting pore as well as the selectivity filter of the Ca2+ release channel, and Asp4878, Asp4907, and Glu4908 residues are predicted to locate at the periphery of the pore assembly of the channel, our data suggest that a physical interaction between RyR1 and triadin could play an active role in the overall Ca2+ release process of excitation-contraction coupling in muscle cells.  相似文献   

6.
Much recent progress has been made in our understanding of the mechanism of sarcoplasmic reticulum Ca2+ release in skeletal muscle. Vertebrate skeletal muscle excitation-contraction (E-C) coupling is thought to occur by a mechanical coupling mechanism involving protein-protein interactions that lead to activation of the sarcoplasmic reticulum (SR) ryanodine receptor (RyR)/Ca2+ release channel by the voltage-sensing transverse (T–) tubule dihydropyridine receptor (DHPR)/Ca2+ channel. In a subsequent step, the released Ca2+ amplify SR Ca2+ release by activating release channels that are not linked to the DHPR. Experiments with mutant muscle cells have indicated that skeletal muscle specific DHPR and RyR isoforms are required for skeletal muscle E-C coupling. A direct functional and structural interaction between a DHPR-derived peptide and the RyR has been described. The interaction between the DHPR and RyR may be stabilized by other proteins such as triadin (a SR junctional protein) and modulated by phosphorylation of the DHPR.  相似文献   

7.
We provide novel evidence that the sarcoplasmic reticulum calcium binding protein, calsequestrin, inhibits native ryanodine receptor calcium release channel activity. Calsequestrin dissociation from junctional face membrane was achieved by increasing luminal (trans) ionic strength from 250 to 500 mM with CsCl or by exposing the luminal side of ryanodine receptors to high [Ca2+] (13 mM) and dissociation was confirmed with sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting. Calsequestrin dissociation caused a 10-fold increase in the duration of ryanodine receptor channel opening in lipid bilayers. Adding calsequestrin back to the luminal side of the channel after dissociation reversed this increased activity. In addition, an anticalsequestrin antibody added to the luminal solution reduced ryanodine receptor activity before, but not after, calsequestrin dissociation. A population of ryanodine receptors (∼35%) may have initially lacked calsequestrin, because their activity was high and was unaffected by increasing ionic strength or by anticalsequestrin antibody: their activity fell when purified calsequestrin was added and they then responded to antibody. In contrast to native ryanodine receptors, purified channels, depleted of triadin and calsequestrin, were not inhibited by calsequestrin. We suggest that calsequestrin reduces ryanodine receptor activity by binding to a coprotein, possibly to the luminal domain of triadin.  相似文献   

8.
The 95 kDa transmembrane glycoprotein triadin is believed to be an essential component of excitation-contraction coupling in the junctional sarcoplasmic reticulum of skeletal muscle fibers. It is debatable whether triadin mediates intraluminal interactions between calsequestrin and the ryanodine receptor exclusively or whether this junctional protein provides also a cytoplasmic linkage between the Ca2+-release channel and the dihydropyridine receptor. Here, we could show that native triadin exists as disulfide-linked homo-polymers of above 3000 kDa. Under non-reducing conditions, protein bands representing the alpha1-dihydropyridine receptor and calsequestrin did not show an immunodecorative overlap with the extremely high-molecular-mass triadin clusters. Following chemical crosslinking, the ryanodine receptor and triadin exhibited a similarly decreased electrophoretic mobility. However, immunoblotting of diagonal non-reducing/reducing two-dimensional gels clearly demonstrated a lack of overlap between the immunodecorated bands representing triadin, the alpha1-dihydropyridine receptor, the ryanodine receptor and calsequestrin. Thus, in native membranes triadin appears to form large self-aggregates primarily. Although triadin exists in a close neighborhood relationship to the Ca2+-release channel tetramers, it does not seem to be directly linked to the other main triad components implicated in the regulation of the excitation-contraction-relaxation cycle and Ca2+-homeostasis. This agrees with a proposed role of triadin in the maintenance of overall triad architecture.  相似文献   

9.
Ca(2+)-handling proteins are important regulators of the excitation-contraction-relaxation cycle in skeletal muscle fibres. Although domain binding studies suggest protein coupling between various Ca(2+)-regulatory elements of triad junctions, no direct biochemical evidence exists demonstrating high-molecular-mass complex formation in native microsomal membranes. Calsequestrin represents the protein backbone of the luminal Ca(2+) reservoir and thereby occupies a central position in Ca(2+) homeostasis; we therefore used calsequestrin blot overlay assays in order to determine complex formation between sarcoplasmic reticulum components. Peroxidase-conjugated calsequestrin clearly labelled four major protein bands in one-dimensional (1D) and 2D electrophoretically separated membrane preparations from adult skeletal muscle. Immunoblotting identified the calsequestrin-binding proteins of approximately 26, 63, 94 and 560 kDa as junctin, calsequestrin itself, triadin and the ryanodine receptor, respectively. Protein-protein coupling could be modified by ionic detergents, non-ionic detergents, changes in Ca(2+) concentration, as well as antibody and purified calsequestrin binding. Importantly, complex formation as determined by blot overlay assays was confirmed by differential co-immunoprecipitation experiments and chemical crosslinking analysis. Hence, the key Ca(2+)-regulatory membrane components of skeletal muscle form a supramolecular membrane assembly. The formation of this tightly associated junctional sarcoplasmic reticulum complex seems to underlie the physiological regulation of skeletal muscle contraction and relaxation, which supports the biochemical concept that Ca(2+) homeostasis is regulated by direct protein-protein interactions.  相似文献   

10.
The level of Ca inside the sarcoplasmic reticulum (SR) is an important determinant of functional activity of the Ca release channel/ryanodine receptor (RyR) in cardiac muscle. However, the molecular basis of RyR regulation by luminal Ca remains largely unknown. In the present study, we investigated the potential role of the cardiac SR luminal auxiliary proteins calsequestrin (CSQ), triadin 1, and junctin in forming the luminal calcium sensor for the cardiac RyR. Recordings of single RyR channels incorporated into lipid bilayers, from either SR vesicle or purified RyR preparations, were performed in the presence of MgATP using Cs+ as the charge carrier. Raising luminal [Ca] from 20 microM to 5 mM increased the open channel probability (Po) of native RyRs in SR vesicles, but not of purified RyRs. Adding CSQ to the luminal side of the purified channels produced no significant changes in Po, nor did it restore the ability of RyRs to respond to luminal Ca. When triadin 1 and junctin were added to the luminal side of purified channels, RyR Po increased significantly; however, the channels still remained unresponsive to changes in luminal [Ca]. In RyRs reassociated with triadin 1 and junctin, adding luminal CSQ produced a significant decrease in activity. After reassociation with all three proteins, RyRs responded to rises of luminal [Ca] by increasing their Po. These results suggest that a complex of CSQ, triadin 1, and junctin confer RyR luminal Ca sensitivity. CSQ apparently serves as a luminal Ca sensor that inhibits the channel at low luminal [Ca], whereas triadin 1 and/or junctin may be required to mediate interactions of CSQ with RyR.  相似文献   

11.
The release of Ca2+ ions from the sarcoplasmic reticulum through ryanodine receptor calcium release channels represents the critical step linking electrical excitation to muscular contraction in the heart and skeletal muscle (excitation–contraction coupling). Two small Ca2+ binding proteins, S100A1 and calmodulin, have been demonstrated to bind and regulate ryanodine receptor in vitro. This review focuses on recent work that has revealed new information about the endogenous roles of S100A1 and calmodulin in regulating skeletal muscle excitation–contraction coupling. S100A1 and calmodulin bind to an overlapping domain on the ryanodine receptor type 1 to tune the Ca2+ release process, and thereby regulate skeletal muscle function. We also discuss past, current and future work surrounding the regulation of ryanodine receptors by calmodulin and S100A1 in both cardiac and skeletal muscle, and the implications for excitation–contraction coupling.  相似文献   

12.
Calsequestrin is the major Ca2+ binding protein in the sarcoplasmic reticulum (SR), serves as the main Ca2+ storage and buffering protein and is an important regulator of Ca2+ release channels in both skeletal and cardiac muscle. It is anchored at the junctional SR membrane through interactions with membrane proteins and undergoes reversible polymerization with increasing Ca2+ concentration. Calsequestrin provides high local Ca2+ at the junctional SR and communicates changes in luminal Ca2+ concentration to Ca2+ release channels, thus it is an essential component of excitation-contraction coupling. Recent studies reveal new insights on calsequestrin trafficking, Ca2+ binding, protein evolution, protein-protein interactions, stress responses and the molecular basis of related human muscle disease, including catecholaminergic polymorphic ventricular tachycardia (CPVT). Here we provide a comprehensive overview of calsequestrin, with recent advances in structure, diverse functions, phylogenetic analysis, and its role in muscle physiology, stress responses and human pathology.  相似文献   

13.
Impaired sarcoplasmic reticulum (SR) Ca release has been suggested to contribute to the depressed cardiac function in heart failure. The release of Ca from the SR may be regulated by the ryanodine receptor, triadin, junctin, calsequestrin, and a histidine-rich, Ca-binding protein (HRC). We observed that the levels of HRC were reduced in animal models and human heart failure. To gain insight into the physiological function of HRC, we infected adult rat cardiac myocytes with a recombinant adenovirus that contains the full-length mouse HRC cDNA. Overexpression (1.7-fold) of HRC in adult rat cardiomyocytes was associated with increased SR Ca load (28%) but decreased SR Ca-induced Ca release (37%), resulting in impaired Ca cycling and depressed fractional shortening (36%) as well as depressed rates of shortening (38%) and relengthening (33%). Furthermore, the depressed basal contractile and Ca kinetic parameters in the HRC-infected myocytes remained significantly depressed even after maximal isoproterenol stimulation. Interestingly, HRC overexpresssion was accompanied by increased protein levels of junctin (1.4-fold) and triadin (1.8-fold), whereas the protein levels of ryanodine receptor, calsequestrin, phospholamban, and sarco(endo)plasmic reticulum Ca-ATPase remained unaltered. Collectively, these data indicate that alterations in expression levels of HRC are associated with impaired cardiac SR Ca homeostasis and contractile function.  相似文献   

14.
Ca(2+) release from intracellular stores is controlled by complex interactions between multiple proteins. Triadin is a transmembrane glycoprotein of the junctional sarcoplasmic reticulum of striated muscle that interacts with both calsequestrin and the type 1 ryanodine receptor (RyR1) to communicate changes in luminal Ca(2+) to the release machinery. However, the potential impact of the triadin association with RyR1 in skeletal muscle excitation-contraction coupling remains elusive. Here we show that triadin binding to RyR1 is critically important for rapid Ca(2+) release during excitation-contraction coupling. To assess the functional impact of the triadin-RyR1 interaction, we expressed RyR1 mutants in which one or more of three negatively charged residues (D4878, D4907, and E4908) in the terminal RyR1 intraluminal loop were mutated to alanines in RyR1-null (dyspedic) myotubes. Coimmunoprecipitation revealed that triadin, but not junctin, binding to RyR1 was abolished in the triple (D4878A/D4907A/E4908A) mutant and one of the double (D4907A/E4908A) mutants, partially reduced in the D4878A/D4907A double mutant, but not affected by either individual (D4878A, D4907A, E4908A) mutations or the D4878A/E4908A double mutation. Functional studies revealed that the rate of voltage- and ligand-gated SR Ca(2+) release were reduced in proportion to the degree of interruption in triadin binding. Ryanodine binding, single channel recording, and calcium release experiments conducted on WT and triple mutant channels in the absence of triadin demonstrated that the luminal loop mutations do not directly alter RyR1 function. These findings demonstrate that junctin and triadin bind to different sites on RyR1 and that triadin plays an important role in ensuring rapid Ca(2+) release during excitation-contraction coupling in skeletal muscle.  相似文献   

15.
Triadin 1 is a protein in the cardiac junctional sarcoplasmic reticulum (SR) that interacts with the ryanodine receptor, junctin, and calsequestrin, proteins that are important for Ca(2+) release. To better understand the role of triadin 1 in SR-Ca(2+) release, we studied the time-dependent expression of SR proteins and contractility in atria of 3-, 6-, and 18-wk-old transgenic mice overexpressing canine cardiac triadin 1 under control of the alpha-myosin heavy chain (MHC) promoter. Three-week-old transgenic atria exhibited mild hypertrophy. Finally, atrial weight was increased by 110% in 18-wk-old transgenic mice. Triadin 1 overexpression was accompanied by time-dependent changes in the protein expression of the ryanodine receptor, junctin, and cardiac/slow-twitch muscle SR Ca(2+)-ATPase isoform. Force of contraction was already decreased in 3-wk-old transgenic atria. The application of caffeine led to a positive inotropic effect in transgenic atria of 3-wk-old mice. Rest pauses resulted in an increased potentiation of force of contraction after restimulation in 3- and 6-wk-old mice and a reduced potentiation of force of contraction in 18-wk-old transgenic mice. Hence, triadin 1 overexpression triggered time-dependent alterations in SR protein expression, Ca(2+) homeostasis, and contractility, indicating for the first time an inhibitory function of triadin 1 on SR-Ca(2+) release in vivo.  相似文献   

16.
17.
Triadin 1 is a major transmembrane protein in cardiac junctional sarcoplasmic reticulum (SR), which forms a quaternary complex with the ryanodine receptor (Ca(2+) release channel), junctin, and calsequestrin. To better understand the role of triadin 1 in excitation-contraction coupling in the heart, we generated transgenic mice with targeted overexpression of triadin 1 to mouse atrium and ventricle, employing the alpha-myosin heavy chain promoter to drive protein expression. The protein was overexpressed 5-fold in mouse ventricles, and overexpression was accompanied by cardiac hypertrophy. The levels of two other junctional SR proteins, the ryanodine receptor and junctin, were reduced by 55% and 73%, respectively, in association with triadin 1 overexpression, whereas the levels of calsequestrin, the Ca(2+)-binding protein of junctional SR, and of phospholamban and SERCA2a, Ca(2+)-handling proteins of the free SR, were unchanged. Cardiac myocytes from triadin 1-overexpressing mice exhibited depressed contractility; Ca(2+) transients decayed at a slower rate, and cell shortening and relengthening were diminished. The extent of depression of cell shortening of triadin 1-overexpressing cardiomyocytes was rate-dependent, being more depressed under low stimulation frequencies (0.5 Hz), but reaching comparable levels at higher frequencies of stimulation (5 Hz). Spontaneously beating, isolated work-performing heart preparations overexpressing triadin 1 also relaxed at a slower rate than control hearts, and failed to adapt to increased afterload appropriately. The fast time inactivation constant, tau(1), of the l-type Ca(2+) channel was prolonged in transgenic cardiomyocytes. Our results provide evidence for the coordinated regulation of junctional SR protein expression in heart independent of free SR protein expression, and furthermore suggest an important role for triadin 1 in regulating the contractile properties of the heart during excitation-contraction coupling.  相似文献   

18.
Triadin has been shown to co-localize with the ryanodine receptor in the sarcoplasmic reticulum membrane. We show that immunoprecipitation of solubilized sarcoplasmic reticulum membrane with antibodies directed against triadin or ryanodine receptor, leads to the co-immunoprecipitation of ryanodine receptor and triadin. We then investigated the functional importance of the cytoplasmic domain of triadin (residues 1-47) in the control of Ca2+ release from sarcoplasmic reticulum. We show that antibodies directed against a synthetic peptide encompassing residues 2-17, induce a decrease in the rate of Ca2+ release from sarcoplasmic reticulum vesicles as well as a decrease in the open probability of the ryanodine receptor Ca2+ channel incorporated in lipid bilayers. Using surface plasmon resonance spectroscopy, we defined a discrete domain (residues 18-46) of the cytoplasmic part of triadin interacting with the purified ryanodine receptor. This interaction is optimal at low Ca2+ concentration (up to pCa 5) and inhibited by increasing calcium concentration (IC50 of 300 microM). The direct molecular interaction of this triadin domain with the ryanodine receptor was confirmed by overlay assay and shown to induce the inhibition of the Ca2+ channel activity of purified RyR in bilayer. We propose that this interaction plays a critical role in the control, by triadin, of the Ca2+ channel behavior of the ryanodine receptor and therefore may represent an important step in the regulation process of excitation-contraction coupling in skeletal muscle.  相似文献   

19.
Junctin is a transmembrane protein of the cardiac junctional sarcoplasmic reticulum (SR) that binds to the ryanodine receptor, calsequestrin, and triadin 1. This quaternary protein complex is thought to facilitate SR Ca2+ release. To improve our understanding of the contribution of junctin to the regulation of SR function, we examined the age-dependent effects of junctin overexpression in the atrium of 3-, 6-, and 18-wk-old transgenic mice. The ratio of atrial weight and body weight was unchanged between junctin-overexpressing (JCN) and wild-type (WT) mice at all ages investigated (n=6-8). The protein expression of triadin 1 was decreased starting in 3-wk-old JCN atria (by 69%), whereas the expression of the ryanodine receptor was diminished in 6- (by 48%) and 18-wk-old (by 57%) JCN atria compared with age-matched WT atria. Force of contraction was decreased by 35% in 18-wk-old JCN compared with age-matched WT left atrial muscle strips, which was accompanied by a prolonged time of relaxation (48.1 +/- 0.9 vs. 44.2 +/- 0.8 ms, respectively, n=6-8, P <0.05). The spontaneous beating rate of isolated right atria was higher in 18-wk-old JCN mice compared with age-matched WT mice (389 +/- 10 vs. 357 +/- 6 beats/min, respectively, n=6-8, P <0.05). Heart rate was lower by 9% in telemetric ECG recordings in 18-wk-old JCN mice during stress tests. Three-week-old JCN atria exhibited a higher potentiation of force of contraction at rest pauses of 30 s (by 13%) and of 300 s (by 35%), suggesting increased SR Ca2+ content. This was consistent with the higher force of contraction in 3-wk-old JCN atria (by 29%) compared with age-matched WT atria (by 10%) under the administration of caffeine. We conclude that in 3-wk-old atria, junctin overexpression was associated with a reduced expression of triadin 1 resulting in a higher SR Ca2+ load without changes in contractility or heart rate. In 6-wk-old JCN atria, the compensatory downregulation of the ryanodine receptor may offset the effects of junctin overexpression. Finally, the progressive decrease in ryanodine receptor density may contribute to the decreased atrial contractility and lower heart rate during stress in 18-wk-old JCN mice.  相似文献   

20.
Calsequestrin is the major Ca2+-binding protein localized in the terminal cisternae of the sarcoplasmic reticulum (SR) of skeletal and cardiac muscle cells. Calsequestrin has been purified and cloned from both skeletal and cardiac muscle in mammalian, amphibian, and avian species. Two different calsequestrin gene products namely cardiac and fast have been identified. Fast and cardiac calsequestrin isoforms have a highly acidic amino acid composition. The amino acid composition of the cardiac form is very similar to the skeletal form except for the carboxyl terminal region of the protein which possess variable length of acidic residues and two phosphorylation sites. Circular dichroism and NMR studies have shown that calsequestrin increases its -helical content and the intrinsic fluorescence upon binding of Ca2+. Calsequestrin binds Ca2+ with high-capacity and with moderate affinity and it functions as a Ca2+ storage protein in the lumen of the SR. Calsequestrin has been found to be associated with the Ca2+ release channel protein complex of the SR through protein-protein interactions. The human and rabbit fast calsequestrin genes have been cloned. The fast gene is skeletal muscle specific and transcribed at different rates in fast and slow skeletal muscle but not in cardiac muscle. We have recently cloned the rabbit cardiac calsequestrin gene. Heart expresses exclusively the cardiac calsquestrin gene. This gene is also expressed in slow skeletal muscle. No change in calsequestrin mRNA expression has been detected in animal models of cardiac hypertrophy and in failing human heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号