首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Infectious diseases caused by pathogens have become a life-threatening problem for millions of people around the world in recent years. Therefore, the need of efficient, fast, low-cost and user-friendly biosensing systems to monitor pathogen has increased enormously in the last few years. This paper presents an overview of different fluorescent labels and the utilization of fluorescence-based biosensor techniques for rapid, direct, sensitive and real-time identification of bacteria. In these biosensors, organic dyes, nanomaterials and rare-earth elements are playing an increasing role in the design of biosensing systems with an interest for applications in bacterial analysis.  相似文献   

2.
A fractal analysis of a confirmative nature only is presented for the binding of estrogen receptor (ER) in solution to its corresponding DNA (estrogen response element, ERE) immobilized on a sensor chip surface [J. Biol. Chem. 272 (1997) 11384], and for the cooperative binding of human 1,25-dihydroxyvitamin D(3) receptor (VDR) to DNA with the 9-cis-retinoic acid receptor (RXR) [Biochemistry 35 (1996) 3309]. Ligands were also used to modulate the first reaction. Data taken from the literature may be modeled by using a single- or a dual-fractal analysis. Relationships are presented for the binding rate coefficient as a function of either the analyte concentration in solution or the fractal dimension that exists on the biosensor surface. The binding rate expressions developed exhibit a wide range of dependence on the degree of heterogeneity that exists on the surface, ranging from sensitive (order of dependence equal to 1.202) to very sensitive (order of dependence equal to 12.239). In general, the binding rate coefficient increases as the degree of heterogeneity or the fractal dimension of the surface increases. The predictive relationships presented provide further physical insights into the reactions occurring on the biosensor surface. Even though these reactions are occurring on the biosensor surface, the relationships presented should assist in understanding and in possibly manipulating the reactions occurring on cellular surfaces.  相似文献   

3.
A fractal analysis is used to model the binding and dissociation kinetics of connective tissue interstitial glucose, adipose tissue interstitial glucose, insulin, and other related analytes on biosensor surfaces. The analysis provides insights into diffusion-limited analyte-receptor reactions occurring on heterogeneous biosensor surfaces. Numerical values obtained for the binding and the dissociation rate coefficients are linked to the degree of heterogeneity or roughness [fractal dimension (D(f))] present on the biosensor chip surface. The binding and dissociation rate coefficients are sensitive to the degree of heterogeneity on the surface. For example, for the binding of plasma insulin, as the fractal dimension value increases by a factor of 2.47 from D(f1)=0.6827 to D(f2)=1.6852, the binding rate coefficient increases by a factor of 4.92 from k(1)=1.0232 to k(2)=5.0388. An increase in the degree of heterogeneity on the probe surface leads to an increase in the binding rate coefficient. A dual-fractal analysis is required to fit the binding kinetics in most of the cases presented. A single fractal analysis is adequate to describe the dissociation kinetics. Affinity (ratio of the binding to the dissociation rate coefficient) values are also presented. Interferents for glucose, such as uric acid and ascorbic acid, were also detected by using glucose biosensors based on carbon nanotube (CNT) nanoelectrode ensembles (NEEs) (Lin Y, Lu F, Tu Y, Ren Z).  相似文献   

4.
A fractal analysis is used to model the binding and dissociation kinetics of connective tissue interstitial glucose, adipose tissue interstitial glucose, insulin, and other related analytes on biosensor surfaces. The analysis provides insights into diffusion-limited analyte-receptor reactions occurring on heterogeneous biosensor surfaces. Numerical values obtained for the binding and the dissociation rate coefficients are linked to the degree of heterogeneity or roughness (fractal dimension, Df) present on the biosensor chip surface. The binding and dissociation rate coefficients are sensitive to the degree of heterogeneity on the surface. For example, for the binding of plasma insulin, as the fractal dimension value increases by a factor of 2.47 from Df1 equal to 0.6827 to Df2 equal to 1.6852, the binding rate coefficient increases by a factor of 4.92 from k1 equal to 1.0232 to k2 equal to 5.0388. An increase in the degree of heterogeneity on the probe surface leads to an increase in the binding rate coefficient. A dual-fractal analysis is required to fit the binding kinetics in most of the cases presented. A single fractal analysis is adequate to describe the dissociation kinetics. Affinity (ratio of the binding to the dissociation rate coefficient) values are also presented. Interferents for glucose such as uric acid and ascorbic acid were also detected using glucose biosensors based on carbon nanotube (CNT) nanoelectrode ensembles (NEEs) (29) (Lin, Y.; Lu, F.; Tu, Y.; Ren, Z. Nano Lett. 2004, 4 (2), 191-195). Attempts are made to standardize biosensor properties in terms of diffusion characteristics on in vivo responsiveness.  相似文献   

5.
Food safety is a global health goal and the foodborne diseases take a major crisis on health. Therefore, detection of microbial pathogens in food is the solution to the prevention and recognition of problems related to health and safety. For this reason, a comprehensive literature survey has been carried out aiming to give an overview in the field of foodborne pathogen detection. Conventional and standard bacterial detection methods such as culture and colony counting methods, immunology-based methods and polymerase chain reaction based methods, may take up to several hours or even a few days to yield an answer. Obviously this is inadequate, and recently many researchers are focusing towards the progress of rapid methods. Although new technologies like biosensors show potential approaches, further research and development is essential before biosensors become a real and reliable choice. New bio-molecular techniques for food pathogen detection are being developed to improve the biosensor characteristics such as sensitivity and selectivity, also which is rapid, reliable, effective and suitable for in situ analysis. This paper not only offers an overview in the area of microbial pathogen detection but it also describes the conventional methods, analytical techniques and recent developments in food pathogen detection, identification and quantification, with an emphasis on biosensors.  相似文献   

6.
A fractal analysis is used to model the binding and dissociation kinetics between analytes in solution and estrogen receptors (ERs) immobilized on a sensor chip of a surface plasmon resonance (SPR) biosensor. The influence of different ligands is also analyzed. A better understanding of the kinetics provides physical insights into the interactions, and suggests means by which appropriate interactions (to promote correct signaling) and inappropriate interactions such as with xenoestrogens (to minimize inappropriate and deleterious to health signaling) may be better controlled. The fractal approach is applied to analyte–ER interaction data available in the literature. The units for the different parameters (rate coefficients and affinities) in fractal-type kinetics are different from those obtained in classical kinetics. Numerical values obtained for the binding and the dissociation rate coefficients are linked to the degree of roughness or heterogeneity (fractal dimension, Df) present on the biosensor chip surface. In general, the binding and the dissociation rate coefficients are very sensitive to the degree of heterogeneity on the surface. A single-fractal analysis is adequate in some cases. In others (that exhibit complexities in the binding or the dissociation curves) a dual-fractal analysis is required to obtain a better fit. This has biomedical and environmental implications in that the dissociation (and the binding) rate coefficient may be used to alleviate (deleterious effects) or enhance (beneficial effects) by selective modulation of the surface. The affinity values obtained in the analysis are consistent with the numbers required to (a) promote signaling between the correct analyte and the estrogen receptor, and (b) minimize the signaling between xenoestrogens and the estrogen receptor.  相似文献   

7.
DNA microarrays have emerged as a viable platform for detection of pathogenic organisms in clinical and environmental samples. These microbial detection arrays occupy a middle ground between low cost, narrowly focused assays such as multiplex PCR and more expensive, broad-spectrum technologies like high-throughput sequencing. While pathogen detection arrays have been used primarily in a research context, several groups are aggressively working to develop arrays for clinical diagnostics, food safety testing, environmental monitoring and biodefense. Statistical algorithms that can analyze data from microbial detection arrays and provide easily interpretable results are absolutely required in order for these efforts to succeed. In this article, we will review the most promising array designs and analysis algorithms that have been developed to date, comparing their strengths and weaknesses for pathogen detection and discovery.  相似文献   

8.
A beacon aptamer-based biosensor for the detection of thrombin was developed using electrochemical transduction method. Gold surface was modified with a beacon aptamer covalently linked at 5'-terminus with a linker containing a primary aliphatic amine. Methylene blue (MB) was intercalated into the beacon sequence, and used as an electrochemical marker. When the beacon aptamer immobilized on gold surface encounters thrombin, the hairpin forming beacon aptamer is conformationally changed to release the intercalated MB, resulting a decrease in electrical current intensity in voltamogram. The peak signal of the MB is clearly decreased by the binding of thrombin onto the beacon aptamer. The linear range of the signal was observed between 0 and 50.8 nM of thrombin with 0.999 correlation factor. This method was able to linearly and selectively detect thrombin with a detection limit of 11 nM.  相似文献   

9.
A small-oligonucleotide microarray prototype was designed with probes specific for the universal 16S rRNA and cpn60 genes of several pathogens that are usually encountered in wastewaters. In addition to these two targets, wecE-specific oligonucleotide probes were included in the microarray to enhance its discriminating power within the Enterobacteriaceae family. Universal PCR primers were used to amplify variable regions of 16S rRNA, cpn60, and wecE genes directly in Escherichia coli and Salmonella enterica serovar Typhimurium genomic DNA mixtures (binary); E. coli, S. enterica serovar Typhimurium, and Yersinia enterocolitica genomic DNA mixtures (ternary); or wastewater total DNA. Amplified products were fluorescently labeled and hybridized on the prototype chip. The detection sensitivity for S. enterica serovar Typhimurium was estimated to be on the order of 0.1% (10(4) S. enterica genomes) of the total DNA for the combination of PCR followed by microarray hybridization. The sensitivity of the prototype could be increased by hybridizing amplicons generated by PCR targeting genes specific for a bacterial subgroup, such as wecE genes, instead of universal taxonomic amplicons. However, there was evidence of PCR bias affecting the detection limits of a given pathogen as increasing amounts of a different pathogen were spiked into the test samples. These results demonstrate the feasibility of using DNA microarrays in the detection of waterborne pathogens within mixed populations but also raise the problem of PCR bias in such experiments.  相似文献   

10.
Biosensor devices, based on the conversion of nucleic acid recognition reactions into useful electrical signals, offer considerable promise for DNA diagnostics. The unique hybridization properties of solution-phase PNA can be extrapolated onto transducer surfaces in connection with the design of remarkably specific DNA biosensors. This article reviews the development of PNA biosensors, and discusses common PNA-biosensing protocols along with their prospects in DNA biosensor technology.  相似文献   

11.
12.
We propose a new type of photosensitive biosensor with a CMOS compatible Si photodiode integrated circuit, for the high-sensitive detection of small mycotoxin molecules requiring competitive assay approach. In this work, a photodiode is connected to the gate of a field effect transistor (FET) so that the open circuit voltage (V(OC)) of the illuminated photodiode is transferred into the drain/source current (I(DS)) of the FET. The sensing scheme employs competitive binding of toxin molecules (within the sample solution) and toxin-BSA conjugates (immobilized on the photodiode surface) with Au-nanoparticle-labeled antibodies, followed by silver enhancement to generate opaque structures on the photodiode surface. By utilizing the non-linear dependence of the V(OC) on the light intensity, we can maintain a sufficiently high signal resolution at low toxin concentrations (with most of the incident light blocked) for the competitive assay. By monitoring the I(DS) of the FET whose gate is driven by the V(OC), quantitative detection of Aflatoxin B1 has been achieved in the range of 0-15ppb.  相似文献   

13.
In this study, electrical impedimetric biosensors composed of Au-electrodes were fabricated for the quantitative detection of human serum albumin (HSA), an essential biomarker of liver function. The Au-electrodes were fabricated via a single-step photolithography process, and can be easily integrated in biochips for assessing liver function in the future. The glass sensing surface between two adjacent Au-electrodes was modified with 3-aminopropyltriethoxysilane (APTES) to improve the biocompatibility for its subsequent binding to anti-human serum albumin (AHSA). The sensing surface without AHSA binding was blocked using skim milk powders, preventing possible non-specific bonding HSA conjugation. Biosensors were used to measure HSA concentration for liver function detection. The impedance between two adjacent Au-electrodes of the biosensors applied with various HSA concentrations was directly measured, and quantified using an electrochemical impedance spectroscopy system under AC conditions. The results of plotting both values in log scales indicated the impedance increased linearly with HSA conjugation increase. The limit of HSA detection was about 2'10(-4)mg/ml using the electrochemical impedimetric biosensor proposed in this work. This study demonstrates the feasibility of using electrochemical impedimetry as a bio-sensing mechanism to quantify human serum albumin concentration. The sensor proposed in this work also displays great potential for assessing liver function because of its simple detection mechanism, ease of biochip integration, and low cost.  相似文献   

14.
Characterization of melanophore morphology by fractal dimension analysis   总被引:1,自引:0,他引:1  
Fractal or focal dimension (FD) analysis is a valuable tool to identify physiologic stimuli at the cellular and tissue levels that allows for quantification of cell perimeter complexity. The FD analysis was determined on fluorescence images of caffeine- or epinephrine-treated (or untreated control) killifish Fundulus heteroclitus (Linneaus) melanophores in culture. Cell perimeters were indicated by rhodamine-phalloidin labeling of cortical microfilaments using box-counting FD analysis. Caffeine-treated melanophores displayed dispersed melanosomes in cells with less serrated edges and reduced FD and complexity. Complexity in epinephrine-treated cells was significantly higher than the caffeine-treated cells or in the control. Cytoarchitectural variability of the cell perimeter is expected because cells change shape when cued with agents. Epinephrine-treated melanophores demonstrated aggregated melanosomes in cells with more serrated edges, significantly higher FD and thus complexity. Melanophores not treated with caffeine or epinephrine produced variable distributions of melanosomes and resulted in cells with variably serrated edges and intermediate FD with a larger SE of the regression and greater range of complexity. Dispersion of melanosomes occurs with rearrangements of the cytoskeleton to accommodate centrifugal distribution of melanosomes throughout the cell and to the periphery. The loading of melanosomes onto cortical microfilaments may provide a less complex cell contour, with the even distribution of the cytoskeleton and melanosomes. Aggregation of melanosomes occurs with rearrangements of the cytoskeleton to accommodate centripetal distribution of melanosomes. The aggregation of melanosomes may contribute to centripetal retraction of the cytoskeleton and plasma membrane. The FD analysis is, therefore, a convenient method to measure contrasting morphologic changes within stimulated cells.  相似文献   

15.
本文介绍了光纤生物传感器的原理,对光纤传感器制作中的工程学和生物学问题进行了探讨并概述了它的应用情况。  相似文献   

16.
In this paper we put forward improved mathematical methods for detecting synthesis parameters in connection with analyzing crude products of chemically synthesized oligonucleotides. The crude products experimentally sampled are separated by high-performance capillary electrophoresis and ion-exchange high-performance liquid chromatography. The measured separation profiles of experimental syntheses can be expressed as target and nontarget yields; they are characterized by a few parameters. These parameters account for nonlinear synthesis equations that are solvable by employing iteration procedures. We provide here a theoretical as well as computational analysis based upon specific models for stepwise chain growth. Under nonconstant (nonuniform) conditions we use here an exponential form of growth, with different expressions for calculating the fractal dimension of the biochemical process under study. Step lengths of parameter variations in an interval of finite length have to be adjusted properly to find convergent solutions in a mathematical, regularly four-dimensional parameter space. It is conceivable to have most, if not all, of the calculating and plotting carefully done by a computer. This analysis represents the experimental situation up to 65-mer target oligonucleotides analyzed so far. We thus obtain the dynamics of the polymerization process limited in number by fractal models. The advantage, calculating these new methods as compared to qualitatively judged experimental methods, lies in the satisfactory evaluation of crude products, also of large amounts, of syntheses of these biopolymers. © 1998 John Wiley & Sons, Inc. Biopoly 45: 361–379, 1998  相似文献   

17.
Heavy metals, that is Cu(II), are harmful to the environment. There is an increasing demand to develop inexpensive detection methods for heavy metals. Here, we developed a yeast biosensor with reduced-noise and improved signal output for potential on-site copper ion detection. The copper-sensing circuit was achieved by employing a secondary genetic layer to control the galactose-inducible (GAL) system in Saccharomyces cerevisiae. The reciprocal control of the Gal4 activator and Gal80 repressor under copper-responsive promoters resulted in a low-noise and sensitive yeast biosensor for copper ion detection. Furthermore, we developed a betaxanthin-based colorimetric assay, as well as 2-phenylethanol and styrene-based olfactory outputs for the copper ion detection. Notably, our engineered yeast sensor confers a narrow range switch-like behaviour, which can give a ‘yes/no’ response when coupled with a betaxanthin-based visual phenotype. Taken together, we envision that the design principle established here might be applicable to develop other sensing systems for various chemical detections.  相似文献   

18.
A fractal analysis of a confirmative nature only is presented for cellular analyte-receptor binding kinetics utilizing biosensors. Data taken from the literature can be modeled by using a single-fractal analysis. Relationships are presented for the binding rate coefficient as a function of the fractal dimension and for the analyte concentration in solution. In general, the binding rate coefficient is rather sensitive to the degree of heterogeneity that exists on the biosensor surface. It is of interest to note that examples are presented where the binding coefficient, k exhibits an increase as the fractal dimension (D(f)) or the degree of heterogeneity increases on the surface. The predictive relationships presented provide further physical insights into the binding reactions occurring on the surface. These should assist in understanding the cellular binding reaction occurring on surfaces, even though the analysis presented is for the cases where the cellular "receptor" is actually immobilized on a biosensor or other surface. The analysis suggests possible modulations of cell surfaces in desired directions to help manipulate the binding rate coefficient (or affinity). In general, the technique presented is applicable for the most part to other reactions occurring on different types of biosensor or other surfaces.  相似文献   

19.
Photosystem II-based biosensors for the detection of pollutants   总被引:1,自引:0,他引:1  
Photosystem II (PSII) is the supramolecular pigment–protein complex in the chloroplast, which catalyses the light-induced transfer of electrons from water to plastoquinone (PQ) in a process that evolves oxygen. The PSII complex is also known to bind some groups of (photosynthetic) herbicides, heavy metals and other chemical substances that affect its activity. The objective of this study is to provide an overview of the systems available for the bioassay of pollutants using biosensors that are based on the photochemical activity of PSII. Some applications of the PSII-based biosensors including herbicide, heavy metal monitoring and the detection of radiation in space experiments are reported.  相似文献   

20.
An evanescent field fibre optic sensor was employed for detecting and monitoring aerobiological pathogen contamination in hospital environment. Measurements of methicillin-resistant Staphylococcus aureus (MRSA) and Streptococcus pneumoniae colonies were detected in 6 and 13 h, respectively, faster than those obtained by means of conventional techniques. All of the bacteria growth phases were clearly time resolved by means of the optical sensor. The 0.33 cm2 sensitive surface area fibre optic transducer also exhibited reproducibility, was of easy construction and low cost, which greatly enhances its potential and usefulness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号