首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The directional movement of cells in chemoattractant gradients requires sophisticated control of the actin cytoskeleton. Uniform exposure of Dictyostelium discoideum amoebae as well as mammalian leukocytes to chemoattractant triggers two phases of actin polymerization. In the initial rapid phase, motility stops and the cell rounds up. During the second slow phase, pseudopodia are extended from local regions of the cell perimeter. These responses are highly correlated with temporal and spatial accumulations of PI(3,4,5)P3/PI(3,4)P2 reflected by the translocation of specific PH domains to the membrane. The slower phase of PI accumulation and actin polymerization is more prominent in less differentiated, unpolarized cells, is selectively increased by disruption of PTEN, and is relatively more sensitive to perturbations of PI3K. Optimal levels of the second responses allow the cell to respond rapidly to switches in gradient direction by extending lateral pseudopods. Consequently, PI3K inhibitors impair chemotaxis in wild-type cells but partially restore polarity and chemotactic response in pten- cells. Surprisingly, the fast phase of PI(3,4,5)P3 accumulation and actin polymerization, which is relatively resistant to PI3K inhibition, can support inefficient but reasonably accurate chemotaxis.  相似文献   

2.
Transforming growth factor-β (TGFβ) plays an important role in breast cancer metastasis. Here phosphoinositide 3-kinase (PI3K) signalling was found to play an essential role in the enhanced migration capability of fibroblastoid cells (FibRas) derived from normal mammary epithelial cells (EpH4) by transduction of oncogenic Ras (EpRas) and TGFβ1. While expression of the PI3K isoform p110δ was down-regulated in FibRas cells, there was an increase in the expression of p110α and p110β in the fibroblastoid cells. The PI3K isoform p110β was found to specifically contribute to cell migration in FibRas cells, while p110α contributed to the response in EpH4, EpRas and FibRas cells. Akt, a downstream targets of PI3K signalling, had an inhibitory role in the migration of transformed breast cancer cells, while Rac, Cdc42 and the ribosomal protein S6 kinase (S6K) were necessary for the response. Together our data reveal a novel specific function of the PI3K isoform p110β in the migration of cells transformed by oncogenic H-Ras and TGF-β1.  相似文献   

3.
Glycogen Synthase Kinase 3 (GSK3) is a multifunctional kinase involved in diverse cellular activities such as metabolism, differentiation, and morphogenesis. Recent studies showed that GSK3 in Dictyostelium affects chemotaxis via TorC2 pathway and Daydreamer. Now we report that GSK3 affects PI3K membrane localization, of which the mechanism has remained to be fully understood in Dictyostelium. The membrane localization domain (LD) of Phosphatidylinositol‐3‐kinase 1 (PI3K1) is phosphorylated on serine residues in a GSK3 dependent mechanism and PI3K1‐LD exhibited biased membrane localization in gsk3? cells compared to the wild type cells. Furthermore, multiple GSK3‐phosphorylation consensus sites exist in PI3K1‐LD, of which phosphomimetic substitutions restored cAMP induced transient membrane localization of PI3K1‐LD in gsk3? cells. Serine to alanine substitution mutants of PI3K1‐LD, in contrast, displayed constitutive membrane localization in wild type cells. Biochemical analysis revealed that GSK3 dependent serine phosphorylation of PI3K1‐LD is constitutive during the course of cAMP stimulation. Together, these data suggest that GSK3 dependent serine phosphorylation is a prerequisite for chemoattractant cAMP induced PI3K membrane localization.  相似文献   

4.
肿瘤对人类的生存危害极大,恶性肿瘤的治疗一直是世界性的难题。肿瘤血管生成是肿瘤赖以生长、转移的基础,受多种因子的调节。目前发现有多条信号网络参与调控肿瘤血管生成,PI3K/Akt是其中比较重要的一条信号传导途径,该通路与肿瘤的发生发展密切相关。本文介绍了PI3K/Akt信号通路的结构组成与活性调控,并重点阐述PI3K/Akt信号途径与肿瘤血管生成的关系。  相似文献   

5.
Focal adhesions are an elaborate network of interconnecting proteins linking actin stress fibers to the extracellular matrix substrate. Modulation of the focal adhesion plaque provides a mechanism for the regulation of cellular adhesive strength. Using interference reflection microscopy, we found that activation of phosphoinositide 3-kinase (PI 3-kinase) by PDGF induces the dissipation of focal adhesions. Loss of this close apposition between the cell membrane and the extracellular matrix coincided with a redistribution of alpha-actinin and vinculin from the focal adhesion complex to the Triton X-100-soluble fraction. In contrast, talin and paxillin remained localized to focal adhesions, suggesting that activation of PI 3-kinase induced a restructuring of the plaque rather than complete dispersion. Furthermore, phosphatidylinositol (3,4, 5)-trisphosphate (PtdIns (3,4,5)-P(3)), a lipid product of PI 3-kinase, was sufficient to induce restructuring of the focal adhesion plaque. We also found that PtdIns (3,4,5)-P(3) binds to alpha-actinin in PDGF-treated cells. Further evidence demonstrated that activation of PI 3-kinase by PDGF induced a decrease in the association of alpha-actinin with the integrin beta subunit, and that PtdIns (3,4,5)-P(3) could disrupt this interaction in vitro. Modification of focal adhesion structure by PI 3-kinase and its lipid product, PtdIns (3,4,5)-P(3), has important implications for the regulation of cellular adhesive strength and motility.  相似文献   

6.
The role of PI(3,4,5)P(3) in Dictyostelium signal transduction and chemotaxis was investigated using the PI3-kinase inhibitor LY294002 and pi3k-null cells. The increase of PI(3,4,5)P(3) levels after stimulation with the chemoattractant cAMP was blocked >95% by 60 microM LY294002 with half-maximal effect at 5 microM. This correlated well with the inhibition of the membrane translocation of the PH-domain protein, PHcracGFP. LY294002 did not reduce cAMP-mediated cGMP production, but significantly reduced the cAMP response up to 75% in wild type and completely in pi3k-null cells. LY294002-treated cells were round, not elongated as control cells. Interestingly, cAMP induced a time and dose-dependent recovery of cell elongation. These elongated LY294002-treated wild-type and pi3k-null cells exhibited chemotactic orientation toward cAMP that is statistically identical to chemotactic orientation of control cells. In control cells, PHcrac-GFP and F-actin colocalize upon cAMP stimulation. However, inhibition of PI3-kinases does not affect the first phase of the actin polymerization at a wide range of chemoattractant concentrations. Our data show that severe inhibition of cAMP-mediated PI(3,4,5)P(3) accumulation leads to inhibition of cAMP relay, cell elongation and cell aggregation, but has no detectable effect on chemotactic orientation, provided that cAMP had sufficient time to induce cell elongation.  相似文献   

7.
The Wiskott-Aldrich syndrome protein (WASP) and neural WASP (N-WASP) are key players in regulating actin cytoskeleton via the Arp2/3 complex. It has been widely reported that the WASP proteins are activated by Rho family small GTPase Cdc42 and that Rac1 acts through SCAR/WAVE proteins. However, a systematic study of the specificity of different GTPases for different Arp2/3 activators has not been conducted. In this study, we have expressed, purified, and characterized completely soluble, highly active, and autoinhibited full-length human WASP and N-WASP from mammalian cells. We show a novel N-WASP activation by Rho family small GTPase Rac1. This GTPase exclusively stimulates N-WASP and has no effects on WASP. Rac1 is a significantly more potent N-WASP activator than Cdc42. In contrast, Cdc42 is a more effective activator of WASP than N-WASP. Lipid vesicles containing PIP2 significantly improve actin nucleation by the Arp2/3 complex and N-WASP in the presence of Rac1 or Cdc42. PIP2 vesicles have no effect on WASP activity alone. Moreover, the inhibition of WASP-stimulated actin nucleation in the presence of Cdc42 and PIP2 vesicles has been observed. We found that adaptor proteins Nck1 or Nck2 are the most potent WASP and N-WASP activators with distinct effects on the WASP family members. Our in vitro data demonstrates differential regulation of full-length WASP and N-WASP by cellular activators that highlights fundamental differences of response at the protein-protein level.  相似文献   

8.
Vascular endothelial growth factor (VEGF), a specific pro-angiogenic peptide, has shown neuroprotective effects in the Parkinson’s disease (PD) models, but the underlying mechanisms remain elusive. In this study, the neuroprotective properties of VEGF on 1-methyl-4-phenylpyridinium ion (MPP+)-induced neurotoxicity in primary cerebellar granule neurons were investigated. Pretreatment of VEGF prevented MPP+-induced neuronal apoptosis in a concentration- and time-dependent manner. And this prevention was blocked by PTK787/ZK222584, a VEGF receptor-2 specific inhibitor. Both inhibition of the Akt pathway and activation of the extracellular signal-regulated kinase (ERK) pathway contribute to MPP+-induced neuronal apoptosis. VEGF reversed the inhibition of phosphoinositide 3-kinase (PI3-K)/Akt pathway caused by MPP+, but further enhanced the activation of ERK induced by MPP+. Interestingly, VEGF and PD98059 (an ERK kinase inhibitor) play a synergistic role in protecting neurons from MPP+-induced toxicity. Collectively, these findings suggest that the PI3-K/Akt and ERK pathways activated by VEGF play opposite roles in MPP+-induced neuronal apoptosis. This finding offers not only a new and clinically significant modality as to how VEGF exerts its neuroprotective effects but also a novel therapeutic strategy for PD by differentially regulating PD-associated signaling pathways.  相似文献   

9.
The discovery of ligand efficient and lipophilicity efficient fragment inhibitors of class 1 phosphatidylinositide 3-kinases (PI3K) is reported. A fragment version of the AstraZeneca compound bank was docked to a homology model of the PI3K p110β isoform. Interaction-based scoring of the predicted binding poses served to further prioritise the virtual fragment hits. Experimental screening confirmed potency for a total of 18 fragment inhibitors, belonging to five different structural classes.  相似文献   

10.
The discovery of 4-morpholino-pyrimidin-6-one and 4-morpholino-pyrimidin-2-one-containing inhibitors of Phosphoinositide 3-kinases (PI3K) p110β isoform is reported. Structure-based optimisation of the original fragment hit resulted in lead compounds with improvements in ligand efficiency, lipophilicity efficiency, p110β potency and selectivity over p110α.  相似文献   

11.
Metastatic disease is the leading cause of death in children suffering from medulloblastoma and a major treatment challenge. The evidence of leptomeningeal dissemination defines the most aggressive tumours and is associated with increased mortality; thus, inhibition of migration as a factor involved in the process of metastatic disease is fundamental for the treatment and prevention of metastatic dissemination. Targeting the small Rho GTPases Rac1 has been shown to effectively impair medulloblastoma cell migration in vitro. Yet clinically applicable selective Rac1 inhibitors are still lacking. In view of the pertinent oncogenic role of the PI3K signalling cascade and tyrosine kinase‐mediated signalling pathways in medulloblastoma, we explored clinically available targeted therapeutics to this effect. Here, we show that Rac1 is expressed in both the cytoplasm and nucleus in the medulloblastoma cell lines Daoy and MEB‐Med‐8A representative of two high risk medulloblastoma entities. We demonstrate that activated Rac1 is subject to substantial downmodulation following administration of the clinically available inhibitor of the PI3K pathway Pictilisib (GDC‐0941) and the multityrosine kinase inhibitors Pazopanib and Sorafenib. The application of those drugs was associated with reduced mobility of the medulloblastoma cells and alterations of the actin skeleton. Of note, PI3K inhibition reveals the strongest anti‐migratory effect in Daoy cells. Thus, our in vitro observations provide new insights into different strategies of blocking Rac1 and inhibiting migration in medulloblastoma employing clinically available agents paving the way for confirmatory studies in in vivo models.  相似文献   

12.
Motility and phagocytosis are the two important processes that are intricately linked to survival and virulence potential of the protist parasite Entamoeba histolytica. These processes primarily rely on actin‐dependent pathways, and regulation of these pathways is critical for understanding the pathology of E. histolytica. Generally, phosphoinositides dynamics have not been explored in amoebic actin dynamics and particularly during phagocytosis in E. histolytica. We have explored the roles of PtdIns(4,5)P2 as well as the enzyme that produces this metabolite, EhPIPKI during phagocytosis. Immunofluorescence and live cell images showed enrichment of EhPIPKI in different stages of phagocytosis from initiation till the cups progressed towards closure. However, the enzyme was absent after phagosomes are pinched off from the membrane. Overexpression of a dominant negative mutant revealed a reduction in the formation of phagocytic cups and inhibition in the rate of engulfment of erythrocytes. Moreover, EhPIPKI binds directly to F and G‐actin unlike PIPKs from other organisms. PtdIns(4,5)P2, the product of the enzyme, also followed a similar distribution pattern during phagocytosis as determined by a GFP‐tagged PH‐domain from PLCδ, which specifically binds PtdIns(4,5)P2 in trophozoites. In summary, EhPIPKI regulates initiation of phagocytosis by regulating actin dynamics.  相似文献   

13.
There is strong evidence that deregulation of prolactin (PRL) signaling contributes to pathogenesis and chemoresistance of breast cancer. Therefore, understanding cross-talk between distinct signal transduction pathways triggered by activation of the prolactin receptor (PRL-R), is essential for elucidating the pathogenesis of metastatic breast cancer.In this study, we applied a sequential inhibitory analysis of various signaling intermediates to examine the hierarchy of protein interactions within the PRL signaling network and to evaluate the relative contributions of multiple signaling branches downstream of PRL-R to the activation of the extracellular signal-regulated kinases ERK1 and ERK2 in T47D and MCF-7 human breast cancer cells.Quantitative measurements of the phosphorylation/activation patterns of proteins showed that PRL simultaneously activated Src family kinases (SFKs) and the JAK/STAT, phosphoinositide-3 (PI3)-kinase/Akt and MAPK signaling pathways. The specific blockade or siRNA-mediated suppression of SFK/FAK, JAK2/STAT5, PI3-kinase/PDK1/Akt, Rac/PAK or Ras regulatory circuits revealed that (1) the PI3-kinase/Akt pathway is required for activation of the MAPK/ERK signaling cascade upon PRL stimulation; (2) PI3-kinase-mediated activation of the c-Raf-MEK1/2-ERK1/2 cascade occurs independent of signaling dowstream of STATs, Akt and PKC, but requires JAK2, SFKs and FAK activities; (3) activated PRL-R mainly utilizes the PI3-kinase-dependent Rac/PAK pathway rather than the canonical Shc/Grb2/SOS/Ras route to initiate and sustain ERK1/2 signaling. By interconnecting diverse signaling pathways PLR may enhance proliferation, survival, migration and invasiveness of breast cancer cells.  相似文献   

14.
Class I phosphoinositide 3-kinases (PI3Ks) are implicated in many cellular responses controlled by receptor tyrosine kinases (RTKs), including actin cytoskeletal remodeling. Within this pathway, Rac is a key downstream target/effector of PI3K. However, how the signal is routed from PI3K to Rac is unclear. One possible candidate for this function is the Rac-activating complex Eps8-Abi1-Sos-1, which possesses Rac-specific guanine nucleotide exchange factor (GEF) activity. Here, we show that Abi1 (also known as E3b1) recruits PI3K, via p85, into a multimolecular signaling complex that includes Eps8 and Sos-1. The recruitment of p85 to the Eps8-Abi1-Sos-1 complex and phosphatidylinositol 3, 4, 5 phosphate (PIP3), the catalytic product of PI3K, concur to unmask its Rac-GEF activity in vitro. Moreover, they are indispensable for the activation of Rac and Rac-dependent actin remodeling in vivo. On growth factor stimulation, endogenous p85 and Abi1 consistently colocalize into membrane ruffles, and cells lacking p85 fail to support Abi1-dependent Rac activation. Our results define a mechanism whereby propagation of signals, originating from RTKs or Ras and leading to actin reorganization, is controlled by direct physical interaction between PI3K and a Rac-specific GEF complex.  相似文献   

15.
Protein tyrosine phosphatase 1B (PTP1B) inhibition increases insulin sensitivity and normalizes blood glucose levels in animals. The molecular events associated with PTP1B inhibition that increase insulin sensitivity remain controversial. Insulin resistant, diabetic ob/ob mice, dosed with PTP1B antisense for 3 weeks exhibited a decrease in PTP1B protein levels and a change in the expression level of p85alpha isoforms in liver, characterized by a reduction in p85alpha and an upregulation of the p50alpha and p55alpha isoforms. Transfection of mouse hepatocytes with PTP1B antisense caused a downregulation PTP1B and p85alpha protein levels. Furthermore, transfection of mouse hepatocytes with PTP1B siRNA downregulated p85alpha protein expression and enhanced insulin-induced PKB phosphorylation. Treatment of mouse hepatocytes with p85alpha antisense oligonucleotide caused a reduction of p85alpha and an increase in p50alpha and p55alpha isoforms and enhanced insulin-stimulated PKB activation. These results demonstrate that PTP1B inhibition causes a direct differential regulation of p85alpha isoforms of PI3-kinase in liver and that reduction of p85alpha may be one mechanism by which PTP1B inhibition improves insulin sensitivity and glucose metabolism in insulin-resistant states.  相似文献   

16.
NAADP participates in the response of starfish oocytes to sperm by triggering the fertilization potential (FP) through the activation of a Ca2+ current which depolarizes the membrane to the threshold of activation of the voltage-gated Ca2+ channels. The aim of this study was to investigate whether this Ca2+ influx is linked to the onset of the concomitant InsP3-mediated Ca2+ wave by simultaneously employing Ca2+ imaging and single-electrode intracellular recording techniques. In control oocytes, the sperm-induced membrane depolarization always preceded by a few seconds the onset of the Ca2+ wave. Strikingly, the self-desensitization of NAADP receptors either abolished the Ca2+ response or resulted in abnormal oocyte activation, i.e., the membrane depolarization followed the Ca2+ wave and the oocyte was polyspermic. The inhibition of InsP3 signaling only impaired the propagation of the Ca2+ wave and shortened the FP. The duration of FP was also reduced in low-Na+ sea water. Finally, uncaged InsP3 produced a Ca2+ increase, which depolarized the membrane upon the activation of a Ca2+-sensitive cation current. These results support the hypothesis that Ca2+ entry during the NAADP-triggered FP is required for the onset of the Ca2+ wave at fertilization. The InsP3-mediated Ca2+ wave, in turn, may interact with the NAADP-evoked depolarization by activating a Ca2+-dependent Na+ entry.  相似文献   

17.
Neutrophils play critical roles in innate immunity and host defense. However, excessive neutrophil accumulation or hyper-responsiveness of neutrophils can be detrimental to the host system. Thus, the response of neutrophils to inflammatory stimuli needs to be tightly controlled. Many cellular processes in neutrophils are mediated by localized formation of an inositol phospholipid, phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3), at the plasma membrane. The PtdIns(3,4,5)P3 signaling pathway is negatively regulated by lipid phosphatases and inositol phosphates, which consequently play a critical role in controlling neutrophil function and would be expected to act as ideal therapeutic targets for enhancing or suppressing innate immune responses. Here, we comprehensively review current understanding about the action of lipid phosphatases and inositol phosphates in the control of neutrophil function in infection and inflammation.  相似文献   

18.
Glucocorticoids (GCs) are effective therapeutics commonly used in multiple myeloma (MM) treatment. Clarifying the pathway of GC-induced apoptosis is crucial to understanding the process of drug resistance and to the development of new targets for MM treatment. We have previously published results of a micro-array identifying glucocorticoid-induced leucine zipper (GILZ) as GC-regulated gene in MM.1S cells. Consistent with those results, GCs increased GILZ in MM cell lines and patient samples. Reducing the levels of GILZ with siRNA decreased GC-induced cell death suggesting GILZ may mediate GC-killing. We conducted a screen to identify other pathways that affect GILZ regulation and report that inhibitors of PI3-kinase/AKT enhanced GILZ expression in MM cell lines and clinical samples. The combination of dexamethasone (Dex) and LY294002, wortmannin, triciribine, or AKT inhibitor VIII dramatically up regulated GILZ levels and enhanced apoptosis. Addition of interleukin-6 (IL-6) or insulin-like growth factor (IGF1), both which activate the PI3-kinase/AKT pathway and inhibit GC killing, blocked up regulation of GILZ by GC and PI3-kinase/AKT inhibitors. In summary, these results identify GILZ as a mediator of GC killing, indicate a role of PI3-kinase/AKT in controlling GILZ regulation and suggest that the combination of PI3-kinase/AKT inhibitors and GCs may be a beneficial MM treatment.  相似文献   

19.
Focal adhesions (FAs) are large assemblies of proteins that mediate intracellular signals between the cytoskeleton and the extracellular matrix (ECM). The turnover of FA proteins plays a critical regulatory role in cancer cell migration. Plasma membrane lipids locally generated or broken down by different inositide kinases and phosphatase enzymes to activate and recruit proteins to specific regions in the plasma membrane. Presently, little attention has been given to the use of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) and Phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) fluorescent biosensors in order to determine the spatiotemporal organisation of PtdIns(4,5)P2 and PtdIns(3,4,5)P3 within and around or during assembly and disassembly of FAs. In this study, specific biosensors were used to detect PtdIns(4,5)P2, PtdIns(3,4,5)P3, and FAs proteins conjugated to RFP/GFP in order to monitor changes of PtdIns(4,5)P2 and PtdIns(3,4,5)P3 levels within FAs. We demonstrated that the localisation of PtdIns(4,5)P2 and PtdIns(3,4,5)P3 were moderately correlated with that of FA proteins. Furthermore, we demonstrate that local levels of PtdIns(4,5)P2 increased within FA assembly and declined within FA disassembly. However, PtdIns(3,4,5)P3 levels remained constant within FAs assembly and disassembly. In conclusion, this study shows that PtdIns(4,5)P2 and PtdIns(3,4,5)P3 localised in FAs may be regulated differently during FA assembly and disassembly.  相似文献   

20.
Both AILIM/ICOS and CD28 provide positive costimulatory signals for T-cell activation, resulting in proliferation and cytokine production. In this study, we attempted to clarify the key signaling molecules in T-cell proliferation, and also IL-2 and IL-10 production, during T-cell activation by CD3 induced by costimulation with either AILIM/ICOS or CD28. We examined the role of both the PI3-kinase/Akt pathway and MAP kinase family members such as ERK1/2, JNK, and p38 kinase in this process. PI3-kinase and Erk1/2 were shown to potentially regulate primary T-cell activation and subsequent proliferation via both AILIM/ICOS- or CD28-mediated costimulation and the Erk signaling cascade was essential for this proliferation induction and also for IL-2 production. The JAK inhibitor, AG490, inhibited this induction. Our studies indicate that IL-2 is necessary for induction of T-cell proliferation and that the quantities of IL-2 produced by AILIM/ICOS ligation are also sufficient for T-cells to proliferate. In contrast, inhibition of Akt and p38, that are phosphorylated by both AILIM/ICOS and CD28-ligation, could downregulate IL-10 production but not T-cell proliferation. These data raise the interesting possibility that the signaling cascades between T-cell proliferation and IL-10 production are regulated by different molecules in AILIM/ICOS- and CD28-costimulated T-cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号