首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Excessive activation of glutamate receptors and overproduction of proinflammatory cytokines, including interleukin-1β (IL-1β) in the spinal dorsal horn, are key mechanisms underlying the development and maintenance of neuropathic pain. In this study, we investigated the mechanisms by which endogenous IL-1β alters glutamatergic synaptic transmission in the spinal dorsal horn in rats with neuropathic pain induced by ligation of the L5 spinal nerve. We demonstrated that endogenous IL-1β in neuropathic rats enhances glutamate release from the primary afferent terminals and non-NMDA glutamate receptor activities in postsynaptic neurons in the spinal dorsal horn. Myeloid differentiation primary response protein 88 (MyD88) is a mediator used by IL-1β to enhance non-NMDA glutamate receptor activities in postsynaptic neurons in the spinal dorsal horn. Presynaptic NMDA receptors are effector receptors used by the endogenous IL-1β to enhance glutamate release from the primary afferents in neuropathic rats. This is further supported by the fact that NMDA currents recorded from small neurons in the dorsal root ganglion of normal rats are potentiated by exogenous IL-1β. Furthermore, we provided evidence that functional coupling between IL-1β receptors and presynaptic NMDA receptors at the primary afferent terminals is mediated by the neutral sphingomyelinase/ceramide signaling pathway. Hence, functional coupling between IL-1β receptors and presynaptic NMDA receptors at the primary afferent terminals is a crucial mechanism leading to enhanced glutamate release and activation of non-NMDA receptors in the spinal dorsal horn neurons in neuropathic pain conditions. Interruption of such functional coupling could be an effective approach for the treatment of neuropathic pain.  相似文献   

2.
Two distinct classes of nociceptive primary afferents, peptidergic and non-peptidergic, respond similarly to acute noxious stimulation; however the peptidergic afferents are more likely to play a role in inflammatory pain, while the non-peptidergic afferents may be more characteristically involved in neuropathic pain. Using multiple immunofluorescence, we determined the proportions of neurons in the rat L4 dorsal root ganglion (DRG) that co-express AMPA or NMDA glutamate receptors and markers for the peptidergic and non-peptidergic classes of primary afferents, substance P and P2X(3), respectively. The fraction of DRG neurons immunostained for the NR1 subunit of the NMDA receptor (40%) was significantly higher than that of DRG neurons immunostained for the GluR2/3 (27%) or the GluR4 (34%) subunits of the AMPA receptor. Of all DRG neurons double-immunostained for glutamate receptor subunits and either marker for peptidergic and non-peptidergic afferents, a significantly larger proportion expressed GluR4 than GluR2/3 or NR1 and in a significantly larger proportion of P2X(3)- than SP-positive DRG neurons. These observations support the idea that nociceptors, involved primarily in the mediation of neuropathic pain, may be presynaptically modulated by GluR4-containing AMPA receptors.  相似文献   

3.
The rostral ventrolateral medulla (rVLM) is involved in processing visceral sympathetic reflexes. However, there is little information on specific neurotransmitters in this brain stem region involved in this reflex. The present study investigated the importance of glutamate and glutamatergic receptors in the rVLM during gallbladder stimulation with bradykinin (BK), because glutamate is thought to function as an excitatory neurotransmitter in this region. Stimulation of visceral afferents activated glutamatergic neurons in the rVLM, as noted by double-labeling with c-Fos and the cellular vesicular glutamate transporter 3 (VGLUT3). Visceral reflex activation significantly increased arterial blood pressure as well as extracellular glutamate concentrations in the rVLM as determined by microdialysis. Barodenervation did not alter the release of glutamate in the rVLM evoked by visceral reflex stimulation. Iontophoresis of glutamate into the rVLM enhanced the activity of sympathetic premotor cardiovascular rVLM neurons. Also, the responses of these neurons to visceral afferent stimulation with BK were attenuated significantly (70%) by blockade of glutamatergic receptors with kynurenic acid. Microinjection of either an N-methyl-D-aspartate (NMDA) receptor antagonist 2-amino-5-phosphonopentanate (25 mM, 30 nl) or an dl-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (2 mM, 30 nl) into the rVLM significantly attenuated the visceral sympathoexcitatory reflex responses. These results suggest that glutamate in the rVLM serves as an excitatory neurotransmitter through a baroreflex-independent mechanism and that both NMDA and AMPA receptors mediate the visceral sympathoexcitatory reflex responses.  相似文献   

4.
Capsaicin receptors are expressed in primary sensory neurons and excited by heat and protons. We examined the inflammation-induced changes of the level of VR1 capsaicin receptor mRNA in sensory neurons and the sensitivity of primary afferents to capsaicin. Carrageenan treatment induced axonal transport of VR1 mRNA, but not that of preprotachykinin mRNA, from the dorsal root ganglia to central and peripheral axon terminals. The sensitivity of central terminals to capsaicin, which was estimated by measuring the capsaicin-evoked release of glutamate from the dorsal horn, was increased by peripheral inflammation, and such an increase was suppressed by inhibiting the RNA translation in the dorsal horn with cycloheximide and an intrathecal injection of VR1 antisense oligonucleotides. Thus, peripheral inflammation induces the axonal transport of VR1 mRNA, which may be involved in the hypersensitivity of primary afferents to capsaicin and the production of inflammatory hyperalgesia.  相似文献   

5.
The role of neurokinin 1 (NK(1)) receptor and possible interaction between NK(1) and N-methyl-D-aspartic acid (NMDA) glutamatergic receptors were investigated on spinal c-fos expression after lower urinary tract irritation with acetic acid infusion in rats. At both levels of the first (L(1)) and sixth lumbar (L(6)) spinal cord, where most of hypogastric nerve and pelvic nerve afferent terminals project, respectively, the selective NK(1) receptor antagonist CP-99,994 dose dependently reduced the total number of c-fos protein (Fos)-positive cells. However, CP-100,263, the enantiomer of CP-99,994 with a very low affinity for NK(1) receptor, did not have any effect on the total number of Fos-positive cells. Coadministration of a low dose (1 mg/kg) of CP-99,994 and NMDA receptor antagonist (MK-801), either of which alone did not affect c-fos expression, significantly inhibited c-fos expression at both levels of the spinal cord. Regarding regional differences, the number of Fos-positive cells decreased significantly at all regions of the L(6) level, but only at the dorsal horn of the L(1) level. These results indicate that NK(1) receptor is involved in spinal c-fos expression after lower urinary tract irritation and that NK(1) and NMDA receptors have a synergistic interaction in the spinal processing of nociceptive input from the lower urinary tract.  相似文献   

6.
Pancreatic islets contain ionotropic glutamate receptors that can modulate hormone secretion. The purpose of this study was to determine whether islets express functional group III metabotropic glutamate (mGlu) receptors. RT-PCR analysis showed that rat islets express the mGlu8 receptor subtype. mGlu8 receptor immunoreactivity was primarily displayed by glucagon-secreting alpha-cells and intrapancreatic neurons. By demonstrating the immunoreactivities of both glutamate and the vesicular glutamate transporter 2 (VGLUT2) in these cells, we established that alpha-cells express a glutamatergic phenotype. VGLUT2 was concentrated in the secretory granules of islet cells, suggesting that glutamate might play a role in the regulation of glucagon processing. The expression of mGlu8 by glutamatergic cells also suggests that mGlu8 may function as an autoreceptor to regulate glutamate release. Pancreatic group III mGlu receptors are functional because mGlu8 receptor agonists inhibited glucagon release and forskolin-induced accumulation of cAMP in isolated islets, and (R,S)-cyclopropyl-4-phosphonophenylglycine, a group III mGlu receptor antagonist, reduced these effects. Because excess glucagon secretion causes postprandial hyperglycemia in patients with type 2 diabetes, group III mGlu receptor agonists could be of value in the treatment of these patients.  相似文献   

7.
Taste receptor cells are innervated by primary gustatory neurons that relay sensory information to the central nervous system. The transmitter(s) at synapses between taste receptor cells and primary afferent fibers is (are) not yet known. By analogy with other sensory organs, glutamate might a transmitter in taste buds. We examined the presence of AMPA and NMDA receptor subunits in rat gustatory primary neurons in the ganglion that innervates the anterior tongue (geniculate ganglion). AMPA and NMDA type subunits were immunohistochemically detected with antibodies against GluR1, GluR2, GluR2/3, GluR4 and NR1 subunits. Gustatory neurons were specifically identified by retrograde tracing with fluorogold from injections made into the anterior portion of the tongue. Most gustatory neurons in the geniculate ganglion were strongly immunoreactive for GluR2/3 (68%), GluR4 (78%) or NR1 (71%). GluR1 was seen in few cells (16%). We further examined if glutamate receptors were present in the peripheral terminals of primary gustatory neurons in taste buds. Many axonal varicosities in fungiform and vallate taste buds were immunoreactive for GluR2/3 but not for NR1. We conclude that gustatory neurons express glutamate receptors and that glutamate receptors of the AMPA type are likely targeted to synapses within taste buds.  相似文献   

8.
A variety of metabolic disorders, including complications experienced by diabetic patients, have been linked to altered neural activity in the dorsal vagal complex. This study tested the hypothesis that augmentation of N-Methyl-D-Aspartate (NMDA) receptor-mediated responses in the vagal complex contributes to increased glutamate release in the dorsal motor nucleus of the vagus nerve (DMV) in mice with streptozotocin-induced chronic hyperglycemia (i.e., hyperglycemic mice), a model of type 1 diabetes. Antagonism of NMDA receptors with AP-5 (100 μM) suppressed sEPSC frequency in vagal motor neurons recorded in vitro, confirming that constitutively active NMDA receptors regulate glutamate release in the DMV. There was a greater relative effect of NMDA receptor antagonism in hyperglycemic mice, suggesting that augmented NMDA effects occur in neurons presynaptic to the DMV. Effects of NMDA receptor blockade on mEPSC frequency were equivalent in control and diabetic mice, suggesting that differential effects on glutamate release were due to altered NMDA function in the soma-dendritic membrane of intact afferent neurons. Application of NMDA (300 μM) resulted in greater inward current and current density in NTS neurons recorded from hyperglycemic than control mice, particularly in glutamatergic NTS neurons identified by single-cell RT-PCR for VGLUT2. Overall expression of NR1 protein and message in the dorsal vagal complex were not different between the two groups. Enhanced postsynaptic NMDA responsiveness of glutamatergic NTS neurons is consistent with tonically-increased glutamate release in the DMV in mice with chronic hyperglycemia. Functional augmentation of NMDA-mediated responses may serve as a physiological counter-regulatory mechanism to control pathological disturbances of homeostatic autonomic function in type 1 diabetes.  相似文献   

9.
The transient receptor potential vanilloid receptor 1 (TRPV1) is expressed on primary afferent terminals and spinal dorsal horn neurons. However, the neurochemical phenotypes and functions of TRPV1-expressing post-synaptic neurons in the spinal cord are not clear. In this study, we tested the hypothesis that TRPV1-expressing dorsal horn neurons are glutamatergic. Immunocytochemical labeling revealed that TRPV1 and vesicular glutamate transporter-2 were colocalized in dorsal horn neurons and their terminals in the rat spinal cord. Resiniferatoxin (RTX) treatment or dorsal rhizotomy ablated TRPV1-expressing primary afferents but did not affect TRPV1- and vesicular glutamate transporter-2-expressing dorsal horn neurons. Capsaicin significantly increased the frequency of glutamatergic spontaneous excitatory post-synaptic currents and miniature excitatory post-synaptic currents in almost all the lamina II neurons tested in control rats. In RTX-treated or dorsal rhizotomized rats, capsaicin still increased the frequency of spontaneous excitatory post-synaptic currents and miniature excitatory post-synaptic currents in the majority of neurons examined, and this effect was abolished by a TRPV1 blocker or by non-NMDA receptor antagonist. In RTX-treated or in dorsal rhizotomized rats, capsaicin also produced an inward current in a subpopulation of lamina II neurons. However, capsaicin had no effect on GABAergic and glycinergic spontaneous inhibitory post-synaptic currents of lamina II neurons in RTX-treated or dorsal rhizotomized rats. Collectively, our study provides new histological and functional evidence that TRPV1-expressing dorsal horn neurons in the spinal cord are glutamatergic and that they mediate excitatory synaptic transmission. This finding is important to our understanding of the circuitry and phenotypes of intrinsic dorsal horn neurons in the spinal cord.  相似文献   

10.
Glutamate receptor activated neuronal cell death has been implicated in the pathogenesis of motor neuron disease but the molecular mechanism responsible for neuronal dysfunction needs to be elucidated. In the present study, we examined the contribution of NMDA and non-NMDA sub-types of glutamate receptors in selective vulnerability of motor neurons. Glutamate receptor activated Ca2+ signaling, mitochondrial functions and neurotoxicity in motor neurons and other spinal neurons were studied in mixed spinal cord primary cultures. Exposure of cells to glutamate receptor agonists glutamate, NMDA and AMPA elevated the intracellular Ca2+, mitochondrial Ca2+ and caused mitochondrial depolarization and cytotoxicity in both motor neurons and other spinal neurons but a striking difference was observed in the magnitude and temporal patterns of the [Ca2+]i responses between the two neuronal cell types. The motor neurons elicited higher Ca2+ load than the other spinal neurons and the [Ca2+]i levels were elevated for a longer duration in motor neurons. AMPA receptor stimulation was more effective than NMDA. Both the NMDA and non-NMDA receptor antagonists APV and NBQX inhibited the Ca2+ entry and decreased the cell death significantly; however, NBQX was more potent than APV. Our results demonstrate that both NMDA and non-NMDA sub-types of glutamate receptors contribute to glutamate-mediated motor neuron damage but AMPA receptors play the major role. AMPA receptor-mediated excessive Ca2+ load and differential handling/regulation of Ca2+ buffering by mitochondria in motor neurons could be central in their selective vulnerability to excitotoxicity.  相似文献   

11.
Abstract: The present study was undertaken to determine whether basal and stimulus-activated dopamine release in the prefrontal cortex (PFC) is regulated by glutamatergic afferents to the PFC or the ventral tegmental area (VTA), the primary source of dopamine neurons that innervate the rodent PFC. In awake rats, blockade of NMDA or α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors in the VTA, or blockade of AMPA receptors in the PFC, profoundly reduced dopamine release in the PFC, suggesting that the basal output of dopamine neurons projecting to the PFC is under a tonic excitatory control of NMDA and AMPA receptors in the VTA, and AMPA receptors in the PFC. Consistent with previous reports, blockade of cortical NMDA receptors increased dopamine release, suggesting that NMDA receptors in the PFC exert a tonic inhibitory control on dopamine release. Blockade of NMDA or AMPA receptors in the VTA as well as blockade of AMPA receptors in the PFC reduced the dopaminergic response to mild handling, suggesting that activation of glutamate neurotransmission also regulates stimulus-induced increase of dopamine release in the PFC. In the context of brain disorders that may involve cortical dopamine dysfunction, the present findings suggest that abnormal basal or stimulus-activated dopamine neurotransmission in the PFC may be secondary to glutamatergic dysregulation.  相似文献   

12.
Recent technical developments, including antigen-retrieval and electron microscopic immunogold methods, are making it possible to determine some of the basic principles governing the subcellular distribution of ionotropic glutamate receptors. Distinct AMPA and NMDA receptor subtypes are selectively targeted to functionally different synapses of a single cell, resulting in an input-selective fine-tuning and regulation of the postsynaptic responses. The amount, density and variability of AMPA receptors at a given glutamatergic synapse is governed by both pre- and postsynaptic factors, resulting in functionally distinct glutamatergic connections that display characteristic patterns of receptor expression.  相似文献   

13.
Under standard conditions, cultured ventral spinal neurons cluster AMPA- but not NMDA-type glutamate receptors at excitatory synapses on their dendritic shafts in spite of abundant expression of the ubiquitous NMDA receptor subunit NR1. We demonstrate here that the NMDA receptor subunits NR2A and NR2B are not routinely expressed in cultured spinal neurons and that transfection with NR2A or NR2B reconstitutes the synaptic targeting of NMDA receptors and confers on exogenous application of the immediate early gene product Narp the ability to cluster both AMPA and NMDA receptors. The use of dominant-negative mutants of GluR2 further showed that the synaptic targeting of NMDA receptors is dependent on the presence of synaptic AMPA receptors and that synaptic AMPA and NMDA receptors are linked by Stargazin and a MAGUK protein. This system of AMPA receptor-dependent synaptic NMDA receptor localization was preserved in hippocampal interneurons but reversed in hippocampal pyramidal neurons.  相似文献   

14.
The mesencephalic trigeminal nucleus is composed of large (35-50 microns) pseudo-unipolar neurons. Closely associated with them are small (< 20 microns) multipolar neurons. An unique peculiarity of the pseudo-unipolar perikarya is that they receive synaptic input from various sources, which sets them apart from the dorsal root and cranial nerves sensory ganglia neurons. Whereas glutamate is the best neurotransmitter candidate in pseudo-unipolar neurons, glutamatergic input into them has not yet been reported. AMPA glutamate receptors are implicated in fast excitatory glutamatergic synaptic transmission. They have been localized ultrastructurally at postsynaptic sites. This study demonstrates that the pseudo-unipolar neurons of the mesencephalic trigeminal nucleus express AMPA glutamate receptor subunits, which indicates that these neurons receive glutamatergic input. Serial sections from the rostral pons and midbrain of Sprague-Dawley rats were immunostained with antibodies against C-terminus of AMPA receptor subunits: GluR1, GluR2/3, and GluR4. The immunoreaction was visualized with avidin-biotin-peroxidase/DAB for light and electron microscopy. With GluR1 antibody only the smallest multipolar neurons were recognized as immunopositive within the mesencephalic trigeminal nucleus. GluR2/3 stained the pseudo-unipolar neurons intensely within the entire rostro-caudal extent of the nucleus. In addition the former antibody stained small multipolar neurons within the mesencephalic trigeminal nucleus, though with somewhat larger dimensions than those immunoreactive for GluR1. Whereas the overall staining with GluR4 antibody was scant, those pseudo-unipolar neurons that were stained, were strongly stained. Furthermore, a considerable number of microglial cells within and surrounding the mesencephalic trigeminal nucleus displayed very intense immunoreactivity for GluR4. These results are discussed in the light of the glutamate receptor subunit composition.  相似文献   

15.
AMPA receptor trafficking at excitatory synapses   总被引:46,自引:0,他引:46  
Bredt DS  Nicoll RA 《Neuron》2003,40(2):361-379
Excitatory synapses in the CNS release glutamate, which acts primarily on two sides of ionotropic receptors: AMPA receptors and NMDA receptors. AMPA receptors mediate the postsynaptic depolarization that initiates neuronal firing, whereas NMDA receptors initiate synaptic plasticity. Recent studies have emphasized that distinct mechanisms control synaptic expression of these two receptor classes. Whereas NMDA receptor proteins are relatively fixed, AMPA receptors cycle synaptic membranes on and off. A large family of interacting proteins regulates AMPA receptor turnover at synapses and thereby influences synaptic strength. Furthermore, neuronal activity controls synaptic AMPA receptor trafficking, and this dynamic process plays a key role in the synaptic plasticity that is thought to underlie aspects of learning and memory.  相似文献   

16.
Kerchner GA  Li P  Zhuo M 《IUBMB life》1999,48(3):251-256
Severe tissue or nerve injury can result in a chronic and inappropriate sensation of pain, mediated in part by the sensitization of spinal dorsal horn neurons to input from primary afferent fibers. Synaptic transmission at primary afferent synapses is mainly glutamatergic. Although a functioning excitatory synapse contains both alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptors in the postsynaptic membrane, recent evidence suggests that dorsal horn neurons contain some "silent" synapses, which exhibit purely NMDA receptor-mediated evoked postsynaptic currents and do not conduct signals at resting membrane potential. Serotonin, which is released onto dorsal horn neurons by descending fibers from the rostroventral medulla, potentiates sensory transmission by activating silent synapses on those neurons, i.e., by recruiting functional AMPA receptors to the postsynaptic membrane. This phenomenon may contribute to the hyperexcitability of dorsal horn neurons seen in chronic pain conditions.  相似文献   

17.
Glutamate receptors have been identified on the peripheral terminals of both primary sensory afferents and sympathetic post-ganglionic neurons, and activation of these receptors produces peripheral sensitization and enhances nociception. Adenosine is an endogenous agent that has a regulatory effect on pain. In brain and spinal cord, adenosine release can be promoted by excitatory amino acids. In the present study, we used in vivo microdialysis to determine whether glutamate also can release adenosine in peripheral tissues. Rats were anesthetized with pentobarbital and microdialysis probes were implanted into the subcutaneous tissue of the plantar aspect of the rat hind paw. Subcutaneous injection of glutamate (50 microL, 0.3-100 micromol) evoked a short-lasting adenosine release immediately following drug injection. Co-administration of either the N-methyl-D-aspartate (NMDA) receptor antagonist, dizocipine maleate (MK-801, 1 nmol) or the non-NMDA receptor antagonist, 6-cyano-7-nitroquinoxaline (CNQX, 10 nmol) with glutamate blocked such release, suggesting an involvement of peripheral ionotropic glutamate receptors in this response. Systemic pre-treatment with capsaicin, a neurotoxin selective for unmyelinated sensory afferents, significantly reduced glutamate-evoked peripheral adenosine release, but release was not affected by systemic pre-treatment with 6-hydroxydopamine, a neurotoxin selective for sympathetic nerve efferents. Neither MK-801 nor CNQX blocked 5% formalin-evoked adenosine release, suggesting adenosine release by formalin is not secondary to ionotropic glutamate receptor activation. We conclude that administration of glutamate evokes peripheral adenosine release, and that peripheral ionotropic glutamate receptors on unmyelinated sensory afferents are involved in such release. The released adenosine may provide a negative feedback control on nociception.  相似文献   

18.
Ten pairs of protrusions, called accessory lobes (ALs), exist at the lateral sides of avian lumbosacral spinal cords. Histological and behavioral evidence suggests that neurons are present in ALs and the AL acts as a sensory organ of equilibrium during walking. Neurons in the outer layer of the AL consistently show glutamate-like immunoreactivity and neurons in the central region of the AL show glutamate receptor-like immunoreactivity. However, it is unknown how glutamate acts on the functional activity of AL neurons. In this study, we examined the effects of glutamate on the electrical activities of AL neurons using the patch clamp technique. There are two types of neurons among isolated AL neurons: spontaneously firing and silent neurons. Among silent neurons, 42 % of neurons responded to glutamate and generated repetitive firing. Kainate and glutamate in combination with the NMDA receptor antagonist, MK-801, also induced firing and evoked an inward current. On the other hand, the application of AMPA, NMDA or glutamate in combination with the non-NMDA receptor antagonist, CNQX, did not. These results indicate that chick AL neurons express functional kainate receptors to respond to glutamate and suggest that the glutamatergic transmission plays a role in excitatory regulation of AL neurons of the chick.  相似文献   

19.
The expression of ionotropic glutamate receptor subunits in the motoneuronal pools of the hypoglossal nucleus was studied using specific antibodies against subunits of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA), kainate and N-methyl-D-aspartate (NMDA) subtypes. The highest numbers of intensely immunolabelled motoneurons were found in the dorsal tier and caudoventromedial part of the hypoglossal nucleus with all antibodies except that against the GluR1 AMPA subunit. Labelling for the GluR1 subunit was weak except for caudally located groups of motoneurons which innervate tongue muscles related to respiratory activity. By contrast, most motoneurons were intensely immunostained with antibodies against GluR2/3 and GluR4 subunits of the AMPA subtype. The low staining observed using an antibody specific for the GluR2 subunit (which prevents Ca2+-entry through AMPA channels) strongly suggests that AMPA receptors in hypoglossal motoneurons are Ca2+-permeable. Immunolabelling for the GluR5/6/7 kainate receptor subunits was found in many motoneuronal somata as well as in thin axon-like profiles and puncta that resembled synaptic boutons. Most motoneurons were intensely immunostained for the NMDA receptor subunit NR1. These results show that the hypoglossal nucleus contains five heterogeneous pools of motoneurons which innervate functionally defined groups of tongue muscles. The uneven expression of the different receptor subunits analysed here could reflect diverse phenotypic properties of hypoglossal motoneurons which might be expected to generate different patterns of motor responses under different physiological or pathological conditions.  相似文献   

20.
Excitatory synaptic transmission in the central nervous system (CNS) is mediated by three major classes of glutamate receptors, namely the ionotropic NMDA (N-Methyl-D-Aspartate) and KA/AMPA (kainate/alpha-amino-3-hydroxyl-5-methylisoxazole-4-propionic acid) receptors and the metabotropic receptor type. Among the ionotropic receptors, NMDA receptors are thought to mediate their physiological response mainly through the influx of extracellular calcium, while KA/AMPA receptor channels are mainly thought to carry the influx of monovalent cations. Recently, we have challenged this view by showing that cloned KA/AMPA receptor subunits GluR1 and GluR3 form ion channels which are permeable to calcium. We now directly demonstrate large increases in intracellular calcium concentrations induced by calcium fluxes through KA/AMPA receptor channels in solutions with physiological calcium concentrations. Calcium fluxes were observed through glutamate receptor channels composed of the subunits GluR1 and GluR3, which are both abundantly present in various types of central neurones. The calcium influx was fluorometrically monitored in Xenopus oocytes injected with the calcium indicator dye fura-2. Bath application of the membrane permeable analogue of adenosine cyclic monophosphate (cAMP) potentiated the current and also the flux of calcium through open KA/AMPA receptor channels. Further pharmacological experiments suggested that this effect was mediated by the activation of protein kinase A. Our results provide a molecular interpretation for the function of calcium permeable KA/AMPA receptor channels in neurones and identify two of the subunits of the KA/AMPA receptor channel which are regulated by the cAMP dependent second messenger system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号