首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gómez C  Espadaler X  Bas JM 《Oecologia》2005,146(2):244-246
Seed dispersal by ants (myrmecochory) is mediated by the presence of a lipid-rich appendage (elaiosome) on the seed that induces a variety of ants to collect the diaspores. When seeds mature or fall onto the ground, these ant species transport them to their nest. After eating the elaiosome, the seed is discarded in nest galleries or outside, in the midden or farther away, where seeds can potentially germinate. The final location of seeds with their elaiosomes removed was evaluated to assess the importance of possible handles (structures that ants can grasp to carry) in transporting ants during re-dispersal experiments of seeds from nests of six species of ants. The results indicate that seeds remained within the nest because the ants were not able to transport them out of the nest. As a consequence of the elaiosome being removed, small ant species could not take Euphorbia characias seeds out of their nests. Only large ant species could remove E. characias seeds from their nests. Attaching an artificial handle to E. characias seeds allowed small ant species to redistribute the seeds from their nests. On the other hand, Rhamnus alaternus seeds that have a natural handle after the elaiosome removal were removed from the nests by both groups of ant species. If a seed has an element that acts as a handle, it will eventually get taken out of the nest. The ants’ size and their mandible gap can determine the outcome of the interaction (i.e. the pattern of the final seed shadow) and as a consequence, could influence the events that take place after the dispersal process.  相似文献   

2.
This study investigated ant seed removal of Piper sancti-felicis, an early successional Neotropical shrub. Neotropical Piper are a classic example of bat-dispersed plants, but we suggest that ants are underappreciated dispersal agents. We identified eleven ant species from the genera Aphaenogaster, Ectatomma, Paratrechina, Pheidole, Trachymyrmex, and Wasmannia recruiting to and harvesting P. sancti-felicis seeds in forest edge and secondary forest sites at La Selva, Costa Rica. We also tested for differences in ant recruitment to five states in which ants can commonly encounter seeds: unripe fruit, ripe fruit, overripe fruit, bat feces, and cleaned seeds. Overall, ants harvested more seeds from ripe and overripe fruits than other states, but this varied among species. To better understand the mechanisms behind ant preferences for ripe/overripe fruit, we also studied how alkenylphenols, secondary metabolites found in high concentrations in P. sancti-felicis fruits, affected foraging behavior in one genus of potential ant dispersers, Ectatomma. We found no effects of alkenylphenols on recruitment of Ectatomma to fruits, and thus, these compounds are unlikely to explain differences in ant recruitment among fruits of different maturity. Considering that P. sancti-felicis seeds have no apparent adaptations for ant dispersal, and few ants removed seeds that were cleaned of pulp, we hypothesize that most ants are harvesting its seeds for the nutritional rewards in the attached pulp. This study emphasizes the importance of ants as important additional dispersers of P. sancti-felicis and suggests that other non-myrmecochorous, vertebrate-dispersed plants may similarly benefit from the recruitment to fruit by ants.  相似文献   

3.
A seed predator drives the evolution of a seed dispersal mutualism   总被引:1,自引:0,他引:1  
Although antagonists are hypothesized to impede the evolution of mutualisms, they may simultaneously exert selection favouring the evolution of alternative mutualistic interactions. We found that increases in limber pine (Pinus flexilis) seed defences arising from selection exerted by a pre-dispersal seed predator (red squirrel Tamiasciurus hudsonicus) reduced the efficacy of limber pine's primary seed disperser (Clark's nutcracker Nucifraga columbiana) while enhancing seed dispersal by ground-foraging scatter-hoarding rodents (Peromyscus). Thus, there is a shift from relying on primary seed dispersal by birds in areas without red squirrels, to an increasing reliance on secondary seed dispersal by scatter-hoarding rodents in areas with red squirrels. Seed predators can therefore drive the evolution of seed defences, which in turn favour alternative seed dispersal mutualisms that lead to major changes in the mode of seed dispersal. Given that adaptive evolution in response to antagonists frequently impedes one kind of mutualistic interaction, the evolution of alternative mutualistic interactions may be a common by-product.  相似文献   

4.
Broad-scale reciprocity in an avian seed dispersal mutualism   总被引:1,自引:0,他引:1  
Aim Coevolved relationships between individual species of birds and plants rarely occur in seed dispersal mutualisms. This study evaluates whether reciprocal relationships may occur between assemblages of bird and plant species. Location Vancouver Island, British Columbia, Canada (48°50′‐N, 125°22′‐W). Methods The distribution and fruiting phenologies of seven shrub species were compared to seasonal changes in habitat selection and seed dispersal by six fruit‐eating bird species. Results Shrub species inhabiting forest understorey habitat had earlier fruiting phenologies than shrub species inhabiting forest edge habitat along lake and bog margins. Birds showed a parallel pattern in habitat selection, being more abundant in the forest understorey early in the fruiting season, and more abundant in the forest edge later in the season. Rates of seed deposition covaried with avian habitat selection, in such a way that birds directed seed dispersal into habitats preferred by shrubs. Conclusions These results depict a broad‐scale pattern in the abundance of birds and fruits indicative of reciprocal interactions. Seasonal changes in seed dispersal to each habitat appear to reinforce the relationship between shrub habitat affinities and fruiting phenologies. Phenological differences between habitats may also reinforce seasonal changes in avian habitat selection. Therefore, although reciprocal interactions between pairs of bird and plant species are rare, broad‐scale reciprocal relationships may occur between assemblages of bird and plant species.  相似文献   

5.
In the present work, firstly, ant emergence was observed: it is a long, stereotyped, precarious event which may require the help of congeners. Then, our experiments on Myrmica sabuleti Meinert 1861 callow ants emerging apart from or inside their colony showed the following points. 1. Newly emerged workers, even if having never olfactorily perceived nestmates, are attracted by congeners’ odor. They can distinguish such an odor from that of another species of Myrmica as well as somewhat from that of alien workers of the same species. So, they might have acquired, at least partly, the knowledge of their congeners’ odor during their larval life. 2. Callow ants having visually perceived congeners at their emergence move towards a presented congener’s washed corpse. Callow ants having emerged without seeing any congeners do not move towards such a corpse. Callow ants having emerged beside a piece of thyme moved towards a non-odorous (solvent-washed) piece of thyme. So, ants may acquire, at least partly, the knowledge of the visual aspect of their species just at their emergence, probably by imprinting. 3. Very young workers confronted with their congeners’ odor on one hand and their congeners’ visual aspect on the other hand, somewhat prefer the odor, even if these young ants belong to a species which exclusively uses its vision for navigating. So, for very young ants, whatever the species, odors are more important and better known than visual characters.  相似文献   

6.
1. Myrmecochory sensu stricto is an ant–plant mutualism in which non‐granivorous ants disperse plant diaspores after feeding on their nutrient‐rich seed appendage, the elaiosome. Phenological traits associated with the diaspore can influence the behaviour of ants and thus their ultimate efficiency as seed dispersers. 2. This study investigated how a contrasting availability of seeds (20 vs. 200 seeds) from the diplochorous Chelidonium majus (Papaveraceae, Linnaeus) plant species influences the behaviour of Myrmica rubra (Formicidae, Linnaeus) ants, from the retrieval of seeds until their dispersal outside the ant nest. 3. Regardless of seed abundance, the ants collected the first diaspores at similar rates. Then, seed retrieval sped up over time for large seed sources until satiation took place with only one‐third of the tested colonies wholly depleting abundant seed sources. 4. No active recruitment by trail‐laying ants was triggered, even to an abundant seed source 5. In both conditions of seed abundance, the majority of the diaspores retrieved inside the nest were discarded with the elaiosome removed and were dispersed at similar distances from the nest. 6. The paper concludes with a discussion of how the quantity of seeds released by a plant with a dual mode of dispersal can potentially influence the behaviour of ant dispersers and hence the dispersal efficiency derived from myrmecochory.  相似文献   

7.
The interaction between granivorous scatterhoarding mammals and plants is a conditional mutualism: scatterhoarders consume seeds (acting as predators), but the movement of seed by scatterhoarders may contribute to dispersal (acting as mutualists). Understanding the ecological factors that shape this relationship is highly relevant in anthropogenically disturbed tropical forests where large‐bodied frugivores are extirpated. In such forests, large‐seeded trees that once depended on these frugivores for dispersal may now only have scatterhoarders as prospective dispersers. We studied Carapa oreophila (Meliaceae) in an Afromontane forest, to test the hypotheses that the proportion of seeds immediately consumed or hoarded (dispersed) would vary over a disturbance gradient. Temporal replication also afforded exploration of how habitat effects might vary with food availability. Using a Bayesian framework, we demonstrate that seeds were more likely to be hoarded in less disturbed forest, irrespective of temporal variation in food abundance. In contrast, forest disturbance only appeared to increase seed predation in temporal replicates that coincided with sustained food availability. These results highlight the potential variability in the dynamics between plants and scatterhoarders over fine temporal scales, elucidating possible ecological scenarios where scatterhoarders might act as mutualists (contributing positively to plant recruitment). Our study also fills important knowledge gaps about the importance of scatterhoarders as dispersers in tropical forests depleted of large‐bodied frugivores, particularly in Africa where scatterhoarding mutualisms have not been extensively studied.  相似文献   

8.
Large fish are often the most effective seed dispersers, but they are also the preferred target for fisheries. We recently started to comprehend the detrimental impacts of the extirpation of large frugivorous fish species on natural forest regeneration, but we lack a general understanding of how intraspecific size‐selective harvest affects fish–fruit mutualism. Our literature review demonstrated that large individuals within populations positively affect diverse aspects of seed dispersal, from consuming a higher diversity of seeds to enhancing germination. Furthermore, we filled a research gap by studying how individual size variations within two small frugivorous fish species (<16 cm) affect seed dispersal in flooded savannas. Even within small‐bodied species, large individuals swallow a higher number of intact seeds, but not necessarily a higher proportion. Overall, our results demonstrate the disproportional role of large‐bodied individuals as key seed dispersers in flooded habitats. Consequently, fishing‐down within both large‐ and small‐bodied species can negatively affect seed dispersal and natural regeneration in overfished wetlands.  相似文献   

9.
Summary The female flowers of Croton bonplandianum bear nectar glands which become active during fruit maturation and attain peak activity just prior to the splitting of fruits. This temporal specificity of nectar gland activity is shown to facilitate seed dispersal by ants, which are attracted to the plant only during the fruit maturation period. The nectar glands establish a nectar influence zone with a radius of 60 cm around the plant within which seed dispersal by ants is effective. Seed dispersal by ants is facilitated only if the seeds are placed within this nectar influence zone. This is accomplished by an intriguing evolutionary shift in the maturation pattern of the fruits. Unlike the usual acropetal development, fruit maturation in Croton is temporally asymmetrical, with the fruits nearer the parental axis maturing early. This unique pattern of fruit development together with the polychasial branching system leads to a concentration of seeds within the nectar influence zone and enhances seed dispersal by ants. The proximate factors responsible for this asynchronous fruit maturity were investigated.  相似文献   

10.
Myrmecochory is an important ant–plant relationship, which presumably has benefits for the reproductive success of ant colonies through the nutritional value of elaiosomes. In a feeding experiment, we provided elaiosomes of Scilla bifolia and Corydalis cava to colonies of Myrmica rubra. Seeds were transported by ant workers to their nests and the elaiosomes were removed afterwards. After 3 months, elaiosome-supplemented colonies contained significantly more worker pupae than control colonies, whereas the number of new female sexuals was reduced. This result is discussed as a possible long-term benefit for M. rubra colonies through myrmecochory by colony growth.  相似文献   

11.
Literature on seed dispersal mutualisms suggests that plant populations should hardly adapt to their current dispersers. We address the predictions that selection pressures exerted by ants on dispersal-related diaspore traits of the ant-dispersed Helleborus foetidus are highly variable in space, and that geographic (inter-population) variation in these traits is unrelated to selection by current dispersers. To test these predictions we use the concept of the quantitative adaptive landscape for seed size at dispersal. Such landscape depicts the relationship between the population’s mean trait value (mean seed size in the present study) and the population’s mean fitness (mean dispersal probability in the present study). Adaptive landscapes make it possible to assess whether the mean population’s phenotype agrees with one favored by selection. We first analyse, in 12 populations of H. foetidus from southern Spain, the extent of divergence among populations in seed and elaiosome size, and the abundance, composition, and behavior of the ant communities. Seeds from a fixed set of five of these populations were offered to ants in all the study sites to fit the adaptive landscape for seed size. In addition, seeds from the local population were also offered in each site. Our results show that seed size has undergone a larger divergence among populations than elaiosome size. Despite geographic variation in ant assemblages, the adaptive landscapes for seed size at dispersal were remarkably similar among sites: ants create disruptive selection on seed size in 10 out of 12 study sites. As predicted, the basic features of these adaptive landscapes (curvature and location of the minimum) varied geographically in accordance with variation in the size of seed dispersers. Also as predicted, in most populations, the observed mean seed size does not agree with that expected from the adaptive landscapes at dispersal. However, the relevance of dispersers for seed size evolution should not be neglected since the agreement between observed and optimum seed size was stronger where dispersers were more abundant. Thus, against the general view, our results evidence that, in H. foetidus, the observed geographic variation in dispersal-related plant traits is partly linked to selection exerted by current dispersers. Geographic variation in ant assemblages determines both the existence of a selection mosaic and the degree of adjustment of populations to the patterns of selection in the mosaic.  相似文献   

12.
Ongoing global climate change is predicted to increase the frequency and magnitude of extreme weather events, impacting population dynamics and community structure. There is, however, a critical lack of case studies considering how climatic perturbations affect biotic interactions. Here, we document how an obligate seed dispersal mutualism was disrupted by a temporally anomalous and meteorologically extreme interlude of unseasonably frigid weather, with accompanying snowstorms, in subtropical China, during January–February 2008. Based on the analysis of 5892 fecal samples (representing six mammalian seed dispersers), this event caused a substantial disruption to the relative seed dispersal function for the raisin tree Hovenia dulcis from prestorm 6.29 (2006) and 11.47 (2007), down to 0.35 during the storm (2008). Crucially, this was due to impacts on mammalian seed dispersers and not due to a paucity of fruit, where 4.63 fruit per branch were available in January 2008, vs. 3.73 in 2006 and 3.58 in 2007. An induced dietary shift occurred among omnivorous carnivores during this event, from the consumption fruit to small mammals and birds, reducing their role in seed dispersal substantially. Induced range shift extinguished the functionality of herbivorous mammals completely, however, seed dispersal function was compensated in part by three omnivorous carnivores during poststorm years, and thus while the mutualism remained intact it was enacted by a narrower assemblage of species, rendering the system more vulnerable to extrinsic perturbations. The storm's extended effects also had anthropogenic corollaries – migrating ungulates becoming exposed to heightened levels of illegal hunting – causing long‐term modification to the seed dispersal community and mutualism dynamics. Furthermore, degraded forests proved especially vulnerable to the storm's effects. Considering increasing climate variability and anthropogenic disturbance, the impacts of such massive, aberrant events warrant conservation concern, while affording unique insights into the stability of mutualisms and the processes that structure biodiversity and mediate ecosystem dynamics.  相似文献   

13.
Presence of amino acid neurotransmitters gamma‐aminobutyric acid (GABA) and glutamate (Glu) in ant brains was reported in very few studies. To learn more about factors influencing GABA and Glu levels in ant brains, we applied high‐performance liquid chromatography to measure levels of these compounds in single brains of workers of 2 ant species, Myrmica ruginodis (subfamily Myrmicinae) and Formica polyctena (subfamily Formicinae) taken from queenright/queenless colony fragments and tested in dyadic aggression tests consisting of an encounter with a nestmate, an alien conspecific or a small cricket. Brain glutamate levels were higher than those of GABA in both tested species. Brain GABA levels (in μmol/brain) and GABA : Glu ratio were higher in M. ruginodis (a submissive species) than in F. polyctena (a dominant, aggressive species) in spite of smaller brain weight of M. ruginodis. Brain glutamate levels (in μmol/brain) did not differ between the tested species, which implies that glutamate concentration (in μmol/mg of brain tissue) was higher in M. ruginodis. Queen absence was associated with increased worker brain GABA levels in F. polyctena, but not in M. ruginodis. No significant effects of opponent type were discovered. As GABA agonists enhance friendly social behavior in rodents, we hypothesize that elevated brain GABA levels of orphaned workers of F. polyctena facilitate the adoption of a new queen. This is the first report providing information on GABA and glutamate levels in single ant brains and documenting the effects of queen presence/absence on brain levels of amino acid neurotransmitters in workers of social Hymenoptera.  相似文献   

14.
Myrmecochorous dispersal distances: a world survey   总被引:13,自引:0,他引:13  
Abstract. Myrmecochorous dispersal distances are reviewed; the seed dispersal curve generated by ants shows a characteristic peak at short distances and a long tail, a shape suited to small densities of safe sites. Mean global distance is of 0.96 m (n= 2524) with a range of 0.01–77 m. Data have been broken down by geography (Northern hemisphere v. Southern hemisphere), taxonomy (ant subfamilies) and ecology (vegetation: sclerophyllous v. mesophyllous). Although a statistical difference exists between dispersal curves from the Northern hemisphere and the Southern hemisphere, this may be an artefact of lack of data from mesophyllous myrmecochores from this hemisphere. The four ant subfamilies do show also numerical differences but could not be subjected to statistical analysis. A difference between the shape of dispersal curve for sclerophyllous myrmecochores and mesophyllous myrmecochores has also been detected. We hypothesize that this difference is related to the myrmecological communities from both types of vegetation: dispersing ants from sclerophyllous vegetation would have smaller nest densities and/or bigger foraging areas than dispersing ants from mesic environments.  相似文献   

15.
Seed predation and seed dispersal can have strong effects on early life history stages of plants. These processes have often been studied as individual effects, but the degree to which their relative importance co-varies with seed predator abundance and how this influences seed germination rates is poorly understood. Therefore, we used a combination of observations and field experiments to determine the degree to which germination rates of the palm Astrocaryum mexicanum varied with abundance of a small mammal seed predator/disperser, Heteromys desmarestianus, in a lowland tropical forest. Patterns of abundance of the two species were strongly related; density of H. desmarestianus was low in sites with low density of A. mexicanum and vice versa. Rates of predation and dispersal of A. mexicanum seeds depended on abundance of H. desmarestianus; sites with high densities of H. desmarestianus had the highest rates of seed predation and lowest rates of seed germination, but a greater total number of seeds were dispersed and there was greater density of seedlings, saplings, and adults of A. mexicanum in these sites. When abundance of H. desmarestianus was experimentally reduced, rates of seed predation decreased, but so did dispersal of A. mexicanum seeds. Critically, rates of germination of dispersed seeds were 5 times greater than undispersed seeds. The results suggest that the relationship between A. mexicanum and H. desmarestianus is a conditional mutualism that results in a strong local effect on the abundance of each species. However, the magnitude and direction of these effects are determined by the relative strength of opposing, but related, mechanisms. A. mexicanum nuts provide H. desmarestianus with a critical food resource, and while seed predation on A. mexicanum nuts by H. desmarestianus is very intense, A. mexicanum ultimately benefits because of the relatively high germination rates of its seeds that are dispersed by H. desmarestianus.  相似文献   

16.
Auld  Tony D.  Denham  A.J. 《Plant Ecology》1999,144(2):201-213
The role seed predators play in influencing the dynamics of plant populations has been little studied in Australia. The interaction of ant dispersal and seed predation on the soil seedbank in six shrubby species of Grevillea from the Sydney region of southeastern Australia was examined in selective exclusion experiments, seed array trials and placement of single seeds on the ground.Two distinct seed types in Grevillea were examined and different seed dispersal and post-dispersal seed predation patterns were associated with each: (a) seeds lacking an elaiosome were not attractive to ants and annual seed losses of between 82 and 95% were found in vegetation unburnt for greater than 8 years. Native rodents, Rattus fuscipes, and macropods, Wallabia bicolor, were responsible for these seed losses; (b) seeds with an elaiosome were rapidly handled by ants. Two functional types of ants were recognised. Most encounters were by ants that were small (Local) relative to seed size and these ants simply removed the elaiosome in situ or moved seeds only small distances (<20 cm). Some 0–24% of ant/seed encounters were by large (Removalist) ant species that were capable of moving seeds back to nests. In addition, Rattus fuscipes and Wallabia bicolor consumed at least 32–68% of seeds of Grevillea species with an elaiosome.Ants may reduce the overall levels of seed predation where seeds moved by Removalist ant species escape predation and are deposited in safe sites, hence allowing more seeds to reach the persistent soil seedbank. Mammals do not consume all seeds when ants are excluded, allowing for the potential for some seed escape from predation after seeds are discarded by Local ant species.  相似文献   

17.
Summary In a study of the biochemical basis of seed dispersal by ants, elaiosomes of Acacia myrtifolia and Tetratheca stenocarpa induced seed collection: intact diaspores and elaiosomes were taken rapidly by ants while most seeds remained on the forest floor. Extracts of elaiosomes (non-polar lipids, polar lipids, and aqueous fractions) were differentially collected by ants. Small pieces of pith impregnated with the polar lipid fraction from elaiosomes of either species elicited a removal rate by ants equivalent to that of intact elaiosomes and significantly higher than that of untreated pith. The non-polar lipid fraction, highest in concentration in elaiosomes of both species, elicited removal that did not differ from that of untreated pith. In T. stenocarpa, however, the aqueous fraction also induced removal equivalent to the polar lipid fraction. 1,2-Diglycerides with unsaturated groups are present in the active polar fractions of both species and unsaturated oleate is the major acid group of the glycerides in elaiosomes. Most oleate-containing compounds tested were taken more rapidly by ants than saturated compounds, and oleic acid, associated with corpse-carrying in ants, induced rapid removal. 1,2-Diolein, but not 1,3-diolein, was taken suggesting that the specific configuration of fatty acid moieties influences collection by ants. We hypothesize that a small suite of oleyl-containing compounds in elaiosomes elicit a stereotyped carrying response by a variety of ants. While the nutrient composition of elaiosomes may provide the underlying selective advantage for ants in seed dispersal, specific compounds may manipulate their behaviour and maximize seed dispersal.  相似文献   

18.
Erythronium dens-canis is a geophyte which produces a single flower each season. The fruits produce small seeds with relatively large elaiosomes. We performed experiments to investigate primary and secondary seed dispersal mechanisms of this species in different habitats in the western part of the Cantabrian Range in northwest Spain. Sticky traps were used to measure primary dispersal of seeds up to 0.5 m from mother plants. Seed cafeteria experiments were performed in different habitats to examine the role of ants and rodents in secondary seed transport and seed predation. Our results indicate that: (a) primary seed dispersal is positively skewed (99% of seeds fall within 20 cm of the mother plant) and seed dispersal distances vary significantly among plants; (b) secondary dispersal is exclusively by myrmecochory, although the proportion of seeds removed by ants differs significantly among habitats; (c) ant species composition and abundances vary among habitats; and (d) freshly dropped seeds are more likely to be removed than seeds that have begun to dry out. We conclude that secondary dispersal of seeds is greatly influenced by habitat but not by small-scale microhabitat. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Rowles AD  O'Dowd DJ 《Oecologia》2009,158(4):709-716
The indirect effects of biological invasions on native communities are poorly understood. Disruption of native ant communities following invasion by the Argentine ant (Linepithema humile) is widely reported to lead indirectly to the near complete collapse of seed dispersal services. In coastal scrub in southeastern Australia, we examined seed dispersal and handling of two native and two invasive alien plant species at Argentine ant-invaded or -uninvaded sites. The Argentine ant virtually eliminates the native keystone disperser Rhytidoponera victoriae, but seed dispersal did not collapse following invasion. Indeed, Argentine ants directly accounted for 92% of all ant-seed interactions and sustained overall seed dispersal rates. Nevertheless, dispersal quantity and quality among seed species differed between Argentine ant-invaded and -uninvaded sites. Argentine ants removed significantly fewer native Acacia retinodes seeds, but significantly more small seeds of invasive Polygala myrtifolia than did native ants at uninvaded sites. They also handled significantly more large seeds of A. sophorae, but rarely moved them >5 cm, instead recruiting en masse, consuming elaiosomes piecemeal and burying seeds in situ. In contrast, Argentine ants transported and interred P. myrtifolia seeds in their shallow nests. Experiments with artificial diaspores that varied in diaspore and elaiosome masses, but kept seed morphology and elaiosome quality constant, showed that removal by L. humile depended on the interaction of seed size and percentage elaiosome reward. Small diaspores were frequently taken, independent of high or low elaiosome reward, but large artificial diaspores with high reward instead elicited mass recruitment by Argentine ants and were rarely moved. Thus, Argentine ants appear to favour some diaspore types and reject others based largely on diaspore size and percentage reward. Such variability in response indirectly reduces native seed dispersal and can directly facilitate the spread of an invasive alien shrub.  相似文献   

20.
Euphorbia characias is a common myrmecochorous plant of the western Mediterranean Basin whose seeds are dispersed by ants following fruit explosion. The variation in elaiosomes’ fatty acid composition of this species was studied at three hierarchical levels (sub-individual, individual and population) in four populations from the Iberian Peninsula. We found that differences in fruit location on the inflorescence do not seem to influence the fatty acid composition of elaiosomes, providing to each propagule an equal chance of being dispersed. However, significant differences in elaiosome fatty acid composition between individuals and populations were found for most of the compounds identified. The content of oleic acid, a key mediator in the ant–seed interaction, differed widely between populations, probably reflecting geographic variations in co-adaptation between plants and their dispersers. The finding that the fatty acid composition of E. characias elaiosomes is distinct from that of the seed itself, but very similar to that of elaiosomes from unrelated species, reinforces the idea of convergent evolution in the chemical composition of these structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号