首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The clone-forming capacity and level of DNA repair was examined on normal human cells and repair-deficient Xeroderma pigmentosum (XP) fibroblasts exposed to various chemical carcinogens and mutagens.The cultured fibroblasts were treated for 90 min with the carcinogenic and mutagenic 4-nitroquinoline 1-oxide (4NQO), 4-hydroxyaminoquinoline 1-oxide (4HAQO), 2-methyl-4-nitroquinoline 1-oxide (2-Me-4NQO), 3-methyl-4-nitropyridine 1-oxide 3-Me-4NPO) and the non-carcinogenic 6-nitroquinoline 1-oxide (6NQO). The response of the cells to the N-oxides was compared to that induced by the mutagen and carcinogen N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) and UV-irradiation.The XP cells showed (1) a reduced level of DNA repair synthesis when exposed to various carcinogenic N-oxides, (2) no unscheduled DNA synthesis following 6NQO and (3) a normal degree of DNA repair synthesis after treatment with MNNG.When the clone-forming capacity was examined the XP cells exhibited (1) a higher increased sensitivity to the various carcinogenic N-oxides, (2) no reduction in the clone formation following 6NQO and (3) a sensitivity virtually comparable to that of normal cells after treatment with MNNG.The results suggest a link between extent of DNA damage, level of DNA repair and degree of sensitivity in human cells exposed to various chemical carcinogens and which induce DNA alterations that cannot be repaired by DNA repair synthesis.  相似文献   

2.
When cells of a human clonal cell line, RSa, with high sensitivity to UV lethality, were treated with the mutagen, ethyl methanesulfonate, a variant cell strain, UVr-1, was established as a mutant resistant to 254-nm far-ultraviolet radiation (UV). Cell proliferation studies showed that UVr-1 cells survived and actively proliferated at doses of UV-irradiation that greatly suppressed the proliferation of RSa cells. Colony-formation assays also confirmed the increased resistance of UVr-1 cells to UV. The recovery from a UV-induced inhibition in DNA synthesis, as [methyl-3H]thymidine uptake into cellular DNA, was more pronounced in UVr-1 cells than in RSa cells. Nevertheless, there was no significant difference in the activity of UV-induced DNA repair synthesis in either cell line, as estimated by the extent of unscheduled DNA synthesis and DNA repair replication. UVr-1 cells were also more refractory to 4-nitroquinoline 1-oxide (4NQO), but the activity of DNA repair synthesis induced by 4NQO in UVr-1 cells was much the same as in the RSa cells. Both N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) sensitivity and MNNG-induced DNA repair synthesis activity in UVr-1 cells were similar to that of RSa cells. These characteristics of UVr-1 cells are discussed in the light of a previously reported UV-resistant variant, UVr-10, which had an increased DNA repair synthesis activity.  相似文献   

3.
The influence of caffeine post-treatment on sister-chromatid exchanges (SCE) and chromosomal aberration frequencies on Chinese hamster cells exposed to a variety of chemical and physical agents followed by bromodeoxyuridine (BrdUrd) was determined. After 2 h treatment, N-methyl-N′-nitrosoguanidine (MNNG) and cis-platinum(II)diamine dichloride (cis-Pt(II)) induced a 7- and 6-fold increase in SCE, respectively, while 4-nitroquinoline-1-oxide (4NQO), methyl methanesulfonate (MMS), proflavine, and N-hydroxyfluorenylacetamide (OH-AAF) caused a 2–3-fold increase in SCE compared to controls treated with BrdUrd alone. Ultraviolet light doubled the number of SCE. The lowest increase of SCE was obtained with bleomycin and X-irradiation. Caffeine post-treatment caused a statistically significant increase in the frequency of SCE induced by UV- and X-irradiation as well as by 4NQO and MMS but did not alter the number of SCE induced by MNNG, cis-Pt(II), proflavine, OH-AAF, and bleomycin.

Caffeine post-treatment increased the number of cells with chromosomal aberrations induced by MNNG, cis-Pt(II), UV, 4NQO, MMS, and proflavine. With the exception of proflavine, these agents are dependent on DNA and chromosome replication for the expression of the chromosomal aberrations. Caffeine enhancement of cis-Pt(II) chromosomal aberrations occurred independently of the time interval between treatment and chromosome preparations. Chromosomal damage produced by bleomycin and X-irradiation, agents known to induce chromosomal aberrations independent of “S” phase of the cell cycle, as well as the damage induced with OH-AAF was not influenced by caffeine post-treatment.

The enhancement by caffeine, an inhibitor of the gap-filling process in post-replication repair, of chromosomal aberrations induced by “S” dependent agents, is consistent with the involvement of this type of repair in chromosomal aberration formation. The lack of inhibition of SCE frequency by caffeine indicates that post-replication repair is probably not important in SCE formation.  相似文献   


4.
In mammalian cells it has previously been observed that low DNA-repair activity is correlated wtih high chromosome-aberration frequency. Since fish cells typically express comparatively low amounts of DNA repair, the chromosome aberration test holds potential as a sensitive fish genotoxicity assay. A comparison of in vitro DNA-repairm activity showed HF > CHO > Ul-H = Ul-F following exposure to MNNG and 4NQO. Although peak chromosome-aberration frequency varied CHO > Ul-H > HF, at comparable mutagen concentrations the relationship was Ul-H > HF > CHO following 4NQO exposure and Ul-H > HF = CHO after MNNG exposure. Analyzing for chromosome aberrations at high mutagen concentrations was not possible due t mitotic inhibition/toxicity which varied according to the mutagen and cell line. Micronuclei frequency varied CHO > Ul-H > HF = Ul-F. In CHO and Ul-H, a 10–15 fold increase over the controls compares with only a 2–3 fold increase for HF and Ul-F. These differences are likely related, in part, to the cell-division rate of each line and the coincident repair of the damaged DNA. Reasons for the lack of negative correlation between DNA repair and chromosomal damage in fish cells are discussed.  相似文献   

5.
Carcinogens on Regeneration   总被引:1,自引:0,他引:1  
A microcrystal (ca 5 μg) of N -methyl- N '-nitro- N -nitrosoguanidine (MNNG) or 4-nitroquinoline-1-oxide (4NQO) was directly administered to the regeneration blastema on day 7 after amputation of a forelimb in the newt in order to analyze the effect of such potent carcinogenic substances on regeneration cells. Although neither MNNG nor 4NQO arrested regeneration completely, they caused great retardation of the regeneration cone formation followed by various abnormalities in the bony structures. Abnormal regenerants could be classified into the following four categories; (1) complete absence of both ulna and radius; (2) subregeneration or superregeneration of carpals and digits; (3) multiple disorganization of skeletal elements; (4) arrest of regeneration at the stage of regeneration cone. The polarity of regenerants developed after application of MNNG or 4NQO was very often shifted, during which the regeneration cone was always formed from the site where a microcrystal of the carcinogens was administered. The secondary regeneration initiated by reamputation of the regenerating limb, which had received the carcinogens at the early blastema stage, proceeded in the same way as observed in the case of a simple amputation. This suggested local and temporal effects of the carcinogens applied. Nevertheless, tumor formation has not induced in the newt limb so far. We can learn from these data that both MNNG and 4NQO only alter behaviour of the newt regeneration cells without excerting their carcinogenic effects on them, and that the newt cells are highly resistant and stable against the above-mentioned carcinogens.  相似文献   

6.
Excision repair was measured in normal human and xeroderma pigmentosum group C fibroblasts treated with ultraviolet radiation and the carcinogens acridine mustard (ICR-170) or 4-nitroquinoline 1-oxide (4NQO) by the techniques of unscheduled synthesis, photolysis of bromodeoxyuridine incorporated into parental DNA during repair, and assays of sites sensitive to ultraviolet (UV)-endonuclease. Doses of ICR-170 and 4NQO, low enough not to inhibit unscheduled DNA synthesis (UDS), caused damage to DNA that was repaired by a long patch type mechanism and the rates of UDS decreased rapidly in the first 12 h after treatment. Repair after a combined action of UV plus ICR-170 or UV plus 4NQO was additive in normal cells and no inhibition of loss of endonuclease sensitive sites was detected. In xeroderma pigmentosum (XP) C cells there was less repair after UV plus ICR-170 than after each treatment separately; whereas there was an additive effect after UV plus 4NQO and no inhibition of loss of endonuclease sensitive sites. The results indicate that in normal human fibroblasts there are different rate limiting steps for removal of chemical and physical damages from DNA and that XP cells have a different repair system for ICR-170, not just a lower level, than normal cells. Possibly the same long patch repair system works on 4NQO damage in both normal and XP cells.  相似文献   

7.
The genetic effects of MNNG, 4NQO and ICR-170 have been compared on 5 different UV-sensitive strains and a standard wild-type strain of Neurospora crassa with regard to inactivation and the induction of forward-mutations at the ad-3A and ad-3B loci. Whereas all UV-sensitive strains (upr-1, uvs-2, uvs-3, uvs-5 and uvs-6) are more sensitive to inactivation by MNNG and ICR-170 than wild-type, only uvs-5 shows survival comparable to wild-type after 4NQO treatment, all other strains are more sensitive to 4NQO. In contrast to the effects on inactivation, a wide variety of effects were found for the induction of ad-3A and ad-3B mutations: higher forward-mutation frequencies than were found in wild-type were obtained after treatment with MNNG or 4NQO for upr-1 and uvs-2, no significant increase over the spontaneous mutation frequency was found with uvs-3 after MNNG, 4NQO or ICR-170 treatment; mutation frequencies comparable to that found in wild-type were obtained with uvs-6 after MNNG, 4NQO or ICR-170 treatment and with upr-1 after ICR-170 treatment. Lower forward-mutation frequencies than were found in wild-type were obtained with uvs-2 after ICR-170 treatment and with uvs-5 after MNNG, 4NQO or ICR-170 treatment. These data clearly show that the process of forward-mutation at the ad-3A and ad-3B loci is under genetic control by mutations at other loci (e.g. upr-1, uvs-2, uvs-3, uvs-5 and uvs-6) and that the effect is markedly mutagen-dependent.  相似文献   

8.
Cultured mouse L5178Y cells were exposed to several carcinogenic and antitumor agents. After exposure to one of the agents, the cells were label with [3H]-thymidine for 20 min, and the DNA was subjected to alkaline sucrose gradient centrifugation immediately or after a chase period. This led us to classify the agents into 3 groups: (1) UV, 4-nitroquinoline-1-oxide (4NQO), N-methyl-N′-nitrosoguanidine (MNNG), nitrogen mustard and Mitomycin C. These were characterized by 20-min DNA labeling patterns showing the formation of small DNA and by the slowing down of their subsequent elongation. Replicated DNA strands would have gaps where “damage” was present on the parental strands. Subsequently, gap-filling replication would occur with or without repairing damage. (2) γ-rays. The 20-min DNA labeling profile displayed a larger size of DNA pieces and the subsequent elongation of this DNA was slightly affected. This probably due to a preferential depression of initiation DNA replication. (3) Methyl methanesulfonate (MMS) and low temperature (28°). The 20-min DNA labeling patterns were qualitatively similar to, but quantitatively different from those of non-irradiated control. The rate of DNA elongation was slightly retarded.  相似文献   

9.
Summary A radiation-sensitive mutant, TW8(radC), of Dictyostelium discoideum is more sensitive to ultraviolet light (UV) killing than the parental wild strain NC4(RAD +), but is resistant to 4-nitroquinoline 1-oxide (4NQO) at almost the same level as NC4. In TW8 amoebae, single-strand breaks of DNA molecules were hardly detectable immediately after UV irradiation, and the removal of pyrimidine dimers was depressed during the postirradiation incubation when compared with that of NC4 amoebae. After treatment with 4NQO, however, single-strand breaks were detected in TW8 amoebae. The almost complete rejoining of these breaks was also detected after the removal of 4HAQO-adducts. The TW8 amoebae have an efficient repair capacity against DNA damage caused by 4NQO, MMS, MMC and MNNG but not UV.Abbreviations 4NQO 4-nitroquinoline 1-oxide - MMS methyl methanesulphonate - MMC mitomycin C - MNNG N-methyl-N-nitro-N-nitrosoguanidine  相似文献   

10.
Benzo[a]pyrene (BP)-, 2-aminoanthracene (2AA)- and 4-nitroquinoline-1-oxide (4NQO)-mediated DNA modification were investigated in rat lungs by using alkaline sucrose gradient sedimentation. The exposure-route, the physicochemical nature of the administered compound and the number of treatments were all important in determining the extent of DNA modification. 4NQO produced qualitatively similar modification whether instilled intratracheally (i.t.) as a suspension or injected subcutaneously (s.c.) in a soluble form. BP and 2AA produced no DNA alteration when injected s.c; they did, however, modify DNA sedimentation when instilled as a suspension, but not until 24 h after treatment. Furthermore, BP caused no DNA modification at any sampling time when instilled in a lipid solvent. In contrast to the DNA modification observed at 24 h after a single i.t. treatment with a BP suspension, no such alteration was detected 12 or 24 h after the last of 5 similar daily treatments. These results are discussed with respect to mechanisms of differential transport, clearance and metabolism of administered carcinogens.  相似文献   

11.
Primary cultures of rat urothelial cells were exposed to hydroxyurea, [3H]thymidine, and 4-nitroquinoline 1-oxide (NQO) or N-hydroxy-4-aminoquinoline 1-oxide (HAQO) in a serum-free media for 2 h; unscheduled DNA synthesis (UDS) was measured by autoradiography. Both NQO and HAQO produced unscheduled DNA synthesis. Dicumarol, an inhibitor of NQO nitroreductase, inhibited the activity of NQO and, to a lesser extent, HAQO. Pyrophosphate, an inhibitor of seryl-AMP synthetase, inhibited the activity of both compounds. Neither dicumarol nor pyrophosphate, under similar experimental conditions, inhibited the activity of N-hydroxy-N-2-acetylaminofluorene (N-OH-AAF). These results support the idea that nitro-reductase and seryl-AMP synthetase may be involved in the activation of NQO.  相似文献   

12.
Characterization was performed of a UV-resistant variant strain, UVr-10, derived from a human clonal cell line, RSb, with high sensitivity not only to the lethal effect of 254-nm far-ultraviolet (UV) irradiation but also to the effects of 4-nitroquinoline 1-oxide (4NQO) and N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), and to the cell proliferation inhibition (CPI) effect of human leukocyte interferon (HuIFN-α) preparations.Colony-formation assays confirmed the increased resistance of UVr-10 cells to both UV and 4NQO, but no increased resistance to MNNG. The marked recovery from the inhibition of the total cellular DNA synthesis of UVr-10 cells, estimated by [methyl-3H]thymidine ([3H]dThd) uptake into the cellular DNA materials, was seen during 6 h after irradiation or 4NQO treatment even under the conditions without the recovery uptake into those of the parent RSb cells, but not during 6 h after MNNG treatment. Comparative studies on the activity of DNA repair synthesis between UVr-10 and RSb cells, by measuring the extent of UV-, 4NQO- or MNNG-induced unscheduled DNA synthesis (UDS) and DNA repair replication, revealed an increased activity of UVr-10 cells to UV and 4NQO but no significant increase of the activity to MNNG. These results suggest that increased DNA repair activities of a UVr-10 cell line may account for its becoming resistant to the lethal effect of UV and 4NQO.Concerning the CPI effect of HuIFN-α, UVr-10 cells showed increased resistance. Further, the DNA synthesis activity of UVr-10 cells was not so inhibited by HuIFN-α exposure as that of RSb cells. However, HuIFN-α-exposed UVr-10 cells showed more enhanced levels of activity of pppA(2′p5′A)n synthetase (2–5A synthetase) than the exposed RSb, thus suggesting that HuIFN-α could exert enough intracellular effect even in UVr-10 cells.The implication of the increased resistance of UVr-10 cells to the effects of UV, 4NQO and HuIFN-α, but not to those of MNNG, is discussed.  相似文献   

13.
4-Nitroquinoline 1-oxide (4NQO) causes an initial rapid inactivation of colony-forming ability of E. elegans but continued inactivation is not observed. The cessation of inactivation appears to be due to the metabolic activity of the organisms and the presumed conversion of 4NQO into non-lethal products. Neither visible light, starvation, nor liquid holding influence recovery from 4NQO damage. Recovery is also not affected by post-treatment growth on acridine-containing medium, but recovery is depressed by exposure to caffeine. It is concluded that Eudorina does no3 possess an excision-resynthesis-repair (ERR) system to overcome 4NQO induced damage, but that the possibly error-prone (i.e. mutant generating) post-replication repair system is operative to cope with the 4NQO induced damage.  相似文献   

14.
DNA photolyase binds to and repairs cyclobutane pyrimidine dimers induced by UV radiation. Here we demonstrate that in the yeast Saccharomyces cerevisiae, photolyase also binds to DNA damaged by the anticancer drugs cis-diamminedichloroplatinum (cis-DDP) and nitrogen mustard (HN2) and by the alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Surprisingly, mutations in photolyase were associated with resistance of yeast cells to cis-DDP, MNNG, 4-nitroquinoline oxide (4NQO), and HN2. Transformation of yeast photolyase mutants with the photolyase gene increased sensitivity to these agents. Thus, while the binding of photolyase to DNA damaged by UV radiation aids survival of the cell, binding to DNA damaged by other agents may interfere with cell survival, perhaps by making the lesions inaccessible to the nucleotide excision repair system.  相似文献   

15.
The frequency of simian papovirus 40 (SV40) induced transformation of human cells was enhanced after pretreatment with either napthylamine-2,N-methyl-N'-nitrosoguanidine (MNNG), N-acetyl-2-fluorenylacetamide (N-Ac-AAF), benzo[a]pyrene (BP), aflatoxin B1, propane sultone (PS), beta-propiolactone, 4-nitroquinoline oxide (4-NQO), methylmethane sulfonate (MMS) or diethyl nitrosamine (DEN). Posttreatment with 4-NQO, MMS, MNNG or DEN inhibited transformation; while posttreatment with either aflatoxin B1, beta-propiolactone or napthylamine-2 did not alter transformation similar to the action of N-Ac-AAF and BP. All carcinogens that altered transformation after pretreatment damaged cellular DNA. Pretreatment or posttreatment with carcinogens 3-methylcholanthrene (3-MCA) or 7,12-dimethylbenzanthrene (7,12-DMBA), that did not damage cellular DNA also did not enhance transformation. Moreover, pre- or posttreatment with other weak or non-carcinogens that did not damage cellular DNA did not alter virus induced transformation. All foci formed in the co-carcinogen treated cultures whether the carcinogen inhibited or enhanced transformation were virus directed. While a similar pattern of response existed for carcinogens that either enhance or inhibit transformation, each of the carcinogens that enhanced or inhibited foci formation damaged cellular DNA. Moreover, those carcinogens that enhanced focus formation, compared to the carcinogens that inhibited focus formation, exhibited similar DNA damage profiles.  相似文献   

16.
The technique of sedimentation in alkaline sucrose was used to examine the formation and repair of single-strand (SS) breaks in cultured mammalian cells that were treated with methyl methanesulfonate (MMS), methyl nitrosourea (MNUA), 4-nitroquinoline-1-oxide (4NQO) or UV-light. The SS breaks induced by MMS and 4NQO were largely repaired by HeLa cells during a 5-h post-treatment incubation. The SS breaks induced by MNUA and UV-light were not repaired by HeLa cells. L-cells were not able to repair the SS breaks induced by any of the agents, which correlates with the deficiency of these cells for repair synthesis of DNA. The following conclusions are discussed. MNUA and UV-light produce modifications in DNA which are not repaired but are translated into SS breaks in alkali. MMS produces SS breaks intracellularly but these are not derived from a simple depurination of methylated purines. 4NQO produces a modification in DNA which is translated into an SS break in alkali but which can be removed by an intracellular process.  相似文献   

17.
N Suzuki 《Mutation research》1987,178(1):135-141
From a human cell line, RSb, with high sensitivity to the killing effects of 4-nitroquinoline 1-oxide (4NQO), N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and 254-nm ultraviolet light, a 4NQO-resistant variant, Qr-10, and an MNNG-resistant one, Gr-10, were established using ethyl methanesulfonate as the mutagen. Cell proliferation studies and colony-formation assays revealed that Qr-10 and Gr-10 cells actively proliferated under conditions where RSb cell proliferation was greatly inhibited by 4NQO and MNNG, respectively. Total cellular DNA synthesis, as estimated by [Me-3H]thymidine uptake into acid-insoluble cell materials, was depressed in 4NQO-treated Qr-10 and MNNG-treated Gr-10 cells as it was in chemical-treated RSb cells, but recovered more markedly from such inhibition in the variants. 4NQO- and MNNG-induced DNA-repair replication synthesis was enhanced to a greater extent in Qr-10 and Gr-10 cells, respectively, than in RSb cells. The Qr-10 and Gr-10 cells showed the same respective susceptibility to the effects of MNNG and 4NQO, on cell growth and DNA synthesis and DNA-repair synthesis as did the parent cells. But, Qr-10 cells had more resistance to UV-killing and higher levels of UV-induced DNA-repair synthesis than did RSb cells, while UV-susceptibility of Gr-10 cells was the same as that of the latter.  相似文献   

18.
Xeroderma pigmentosum (XP) cells are dificient in the repair of damage induced by ultraviolet irradiation. Excision-repair-deficient XP cell strains have been classified into 7 distinct complementation groups, according to results of studies on cell fusion and UV irradiation. XP cells are not only abnormally sensitive to UV, but also to a variety of chemical carcinogens, including 4-nitroquinoline-1-oxide (4NQO). Complementation analysis with XP strains from 4 different complementation groups with respect to the repair of 4NQO-induced DNA damage revealed that the classification of the strains into complementation groups with respect to 4NQO-induced repair coincides with the classification based on the repair of UV damage.  相似文献   

19.
Reduced DNA repair during differentiation of a myogenic cell line   总被引:3,自引:1,他引:2       下载免费PDF全文
Repair synthesis induced by 4-nitroquinoline-1-oxide (4NQO) in L6 myoblasts before and after cellular fusion was measured by [3H] thymidine incorporation into unreplicated DNA. The level of repair synthesis was reuced after the cells had fused into myotubes. The terminal addition of radioactive nucleotides into DNA strands occurred only to a minor extent, and the dilution of [3H] thymidine by intracellular nucleotide pools was shown not to be responsible for the observed difference in repair synthesis, Both the initial rate and the overall incorporation of [3H] thymidine were found to be 50% lower in the myotubes. 4NQO treatment of myoblasts and myotubes induced modifications in the DNA which were observed as single-strand breaks during alkaline sucrose sedimentation. After the myoblasts were allowed a post-treatment incubation, most of the single-strand breaks were not longer apparent. In contrast, a post-treatment incubation of myotubes did not change the extent of single-strand breakage seen. Both myoblasts and myotubes were equally effective in repairing single- strand breaks induced by X radiation. It would appear that when myoblasts fuse, a repair enzyme activity is lost, probably an endonuclease that recognizes one of the 4 NQO modifications of DNA. The result observed is a partial loss of repair synthetic ability and a complete loss of ability to remove the modification that appears as a single-strand break in alkali.  相似文献   

20.
Growth inhibition of Crithidia fasciculata by 4-nitroquinoline 1-oxide (NQO) was observed in defined and complex media at 28 C. Aromatic amino acids, cysteine, and nicotinic acid, among several other substances, were ineffective in overcoming NQO toxicity. Dicoumarol and bovine albumin reversed NQO inhibition. While bovine albumin probably acted by the extra-cellular binding of NQO, dicoumarol inhibited the activity of DT-diaphorase, which reduces NQO to 4-hydroxyaminonitroquinoline 1-oxide (HAQO). The DT-diaphorase from C. fasciculata had the same characteristics as the enzyme from rat liver. The specific protection by dicoumarol against NQO inhibition suggests that HAQO is the active toxic substance for C. fasciculata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号