首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although Mycobacterium kansasii has emerged as an important pathogen frequently encountered in immunocompromised patients, little is known about the mechanisms of M. kansasii pathogenicity. Lipoarabinomannan (LAM), a major mycobacterial cell wall lipoglycan, is an important virulence factor for many mycobacteria, as it modulates the host immune response. Therefore, the detailed structures of the of M. kansasii LAM (KanLAM), as well as of its biosynthetic precursor lipomannan (KanLM), were determined in a clinical strain isolated from a human immunodeficiency virus-positive patient. Structural analyses revealed that these lipoglycans possess important differences as compared with those from other mycobacterial species. KanLAM carries a mannooligosaccharide cap but is devoid of the inositol phosphate cap present in Mycobacterium smegmatis. Characterization of the mannan core of KanLM and KanLAM demonstrated the following occurrences: 1) alpha1,2-oligo-mannopyranosyl side chains, contrasting with the single mannopyranosyl residues substituting the mannan core in all the other structures reported so far; and 2) 5-methylthiopentose residues that were described to substitute the arabinan moiety from Mycobacterium tuberculosis LAM. With respect to the arabinan domain of KanLAM, succinyl groups were found to substitute the C-3 position on 5-arabinofuranosyl residues, reported to be linked to the C-2 of the 3,5-arabinofuranose in Mycobacterium bovis bacillus calmette-guerin LAM. Because M. kansasii has been reported to induce apoptosis, we examined the possibility of the M. kansasii lipoglycans to induce apoptosis of THP-1 cells. Our results indicate that, in contrast to KanLAM, KanLM was a potent apoptosis-inducing factor. This work underlines the diversity of LAM structures among various pathogenic mycobacterial species and also provides evidence of LM being a potential virulence factor in M. kansasii infections by inducing apoptosis.  相似文献   

2.
The cell wall of mycobacteria consists of an outer membrane, analogous to that of gram-negative bacteria, attached to the peptidoglycan (PG) via a connecting polysaccharide arabinogalactan (AG). Although the primary structure of these components is fairly well deciphered, issues such as the coverage of the PG layer by covalently attached mycolates in the outer membrane and the spatial details of the mycolic acid attachment to the arabinan have remained unknown. It is also not understood how these components work together to lead to the classical acid-fast staining of mycobacteria. Because the majority of Mycobacterium tuberculosis bacteria in established experimental animal infections are acid-fast negative, clearly cell wall changes are occurring. To address both the spatial properties of mycobacterial cell walls and to begin to study the differences between bacteria grown in animals and cultures, the cell walls of Mycobacterium leprae grown in armadillos was characterized and compared with that of M. tuberculosis grown in culture. Most fundamentally, it was determined that the cell wall of M. leprae contained significantly more mycolic acids attached to PG than that of in vitro grown M. tuberculosis (mycolate:PG ratios of 21:10 versus 16:10, respectively). In keeping with this difference, more arabinogalactan (AG) molecules, linking the mycolic acids to PG, were found. Differences in the structures of the AG were also found; the AG of M. leprae is smaller than that of M. tuberculosis, although the same basic structural motifs are retained.  相似文献   

3.
4.
Lipomannan (LM) and lipoarabinomannan (LAM) are major glycolipids present in the mycobacterial cell wall that are able to modulate the host immune response. In this study, we have undertaken the structural determination of these important modulins in Mycobacterium chelonae, a fast growing pathogenic mycobacterial species. One-dimensional and two-dimensional NMR spectra were used to demonstrate that LM and LAM from M. chelonae, designated CheLM and CheLAM, respectively, possess structures that differ from the ones reported earlier in other mycobacterial species. Analysis by gas chromatography/mass spectrometry of the phosphatidyl-myo-inositol anchor, which is thought to play a role in the biological functions of these lipoglycans, pointed to a high degree of heterogeneity based on numerous combinations of acyl groups on the C-1 and C-2 positions of the glycerol moiety. Characterization of the mannan core of CheLM and CheLAM revealed the presence of novel alpha1,3-mannopyranosyl side chains. This motif, which reacted specifically with the lectin from Galanthus nivalis, was found to be unique among a panel of nine mycobacterial species. Then, CheLM and CheLAM were found to be devoid of both the mannooligosaccharide cap present in Mycobacterium tuberculosis and the inositol phosphate cap present in Mycobacterium smegmatis and other fast growing species. Tumor necrosis factor-alpha and interleukin-8 production were assessed from human macrophages with LAM preparations from different species. Our results suggest that the inositol phosphate capping may represent the major cytokine-inducing component of LAMs. This work not only underlines the diversity of LAM structures among various mycobacterial species but also provides new structures that could be useful to dissect the structure-function relationships of these complex molecules.  相似文献   

5.
Lipoarabinomannan (LAM) is a structurally heterogeneous amphipathic lipoglycan present in Mycobacterium spp. and other actinomycetes, which constitutes a major component of the cell wall and exhibits a wide spectrum of immunomodulatory effects. Analysis of Mycobacterium smegmatis subcellular fractions and spheroplasts showed that LAM and lipomannan (LM) were primarily found in a cell wall-enriched subcellular fraction and correlated with the presence (or absence) of the mycolic acids in spheroplast preparations, suggesting that LAM and LM are primarily associated with the putative outer membrane of mycobacteria. During the course of these studies significant changes in the LAM/LM content of the cell wall were noted relative to the age of the culture. The LAM content of the M. smegmatis cell wall was dramatically reduced as the bacilli approached stationary phase, whereas LM, mycolic acid, and arabinogalactan content appeared to be unchanged. In addition, cell morphology and acid-fast staining characteristics showed variations with growth phase of the bacteria. In the logarithmic phase, the bacteria were found to be classic rod-shaped acid-fast bacilli, while in the stationary phase M. smegmatis lost the characteristic rod shape and developed a punctate acid-fast staining pattern with carbolfuchsin. The number of viable bacteria was independent of LAM content and phenotype. Taken together, the results presented here suggest that LAM is primarily localized with the mycolic acids in the cell wall and that the cellular concentration of LAM in M. smegmatis is selectively modulated with the growth phase.  相似文献   

6.
The mycobacterial D-arabinofuran is a common constituent of both cell wall mycolyl-arabinogalactan (AG) and the associated lipoarabinomannan (LAM), and is thus accorded critical structural and immunological roles. Despite a well-recognized importance, progress in understanding its full structural characteristics beyond the nonreducing terminal motifs has hitherto been limited by available analytical tools. An endogenous arabinanase activity recently isolated from Mycobacterium smegmatis was previously shown to be capable of releasing large oligoarabinosyl units from AG. Advanced tandem mass spectrometry utilizing both low and high energy collision induced dissociation now afforded a facile way to map and directly sequence the digestion products which were dominated by distinctive Ara18 and Ara19 structural units, together with Ara7 and lesser amount of Ara11 and Ara12. Significantly, evidence was obtained for the first time which validated the linkages and branching pattern of the previously inferred Ara22 structural motif of AG, on which the preferred cleavage sites of the novel arabinanase could be localized. The established linkage-specific MS/MS fragmentation characteristics further led to identification of a galactosamine substituent on the C2 position of a portion of the internal 3,5-branched Ara residue of the AG of Mycobacterium tuberculosis, but not that of the nonpathogenic, fast growing M. smegmatis.  相似文献   

7.
The critical role of embC in Mycobacterium tuberculosis   总被引:1,自引:0,他引:1  
  相似文献   

8.
Arabinomannan (AMannan) and mannan (Mannan) are major polysaccharides antigens of the mycobacterial capsule. They are highly related to the lipoarabinomannan (LAM) and lipomannan (LM) lipoglycans of the cell wall, known to participate to the immunopathogenesis of mycobacterial infections. Here we present the identification of two related polysaccharides from Mycobacterium kansasii that co-purified with AMannan and Mannan. Structural analysis using GC, MALDI-MS and NMR clearly established these molecules as non-acylated phosphorylated AMannan and Mannan designated P-AMannan and P-Mannan, respectively. These glycoconjugates represent a new source of polysaccharide structural variability in mycobacteria and constitute unique tools for structure-activity relationship studies in order to investigate the role of fatty acids in the biological functions of LAM and LM. The potential participation of these polysaccharides in influencing the outcome of the infection is also discussed.  相似文献   

9.
Lipoarabinomannan (LAM) is a major and structurally important outer cell wall component of all mycobacteria. LAM is also generally regarded as an important immunomodulating substance affecting several immunologic networks and hence important in the pathogenesis of mycobacterial infections. We here describe a new method for large-scale purification of mycobacterial LAM. A crude cell wall preparation was prepared from batch-grown Mycobacterium tuberculosis H37Rv. From this cell wall preparation LAM was purified by sequential extractions and chromatographic steps. From 20 g dry weight cell wall preparation 313 mg of highly purified (> 98%) LAM was obtained in only 3 days. The LAM content of the final purification step was quantified by ELISA using reference LAM as standard. The identity and purity of the LAM preparation was further confirmed by comparison with reference LAM preparation from M. tuberculosis strain Erdman in polyacrylamide gel electrophoresis and Western blots, using reference anti-LAM monoclonals CS-35 and CS-40.  相似文献   

10.
Tsukamurella paurometabolum and Mycobacterium fallax are members of the suprageneric actinomycete group Corynebacterineae that possesses a cell wall skeleton composed of a peptidoglycan to which an arabinogalactan is covalently attached. This polysaccharide is further modified by esterification with C60-C80 mycolic acid residues in mycobacteria and T. paurometabolum. However, M. fallax and T. paurometabolum produce polyenoic (up to six double bonds) mycolic acids whereas the most common type of mycobacterial mycolates, called alpha-mycolates, are mono- and di-enoic or -cyclopropanated mycolic acids. To determine whether this difference also applied to the structures of cell wall arabinogalactans, competitive inhibition experiments using antibodies raised against the cell wall from Mycobacterium bovis and the arabinogalactans from T. paurometabolum and M. fallax were performed. They demonstrated the structural identity between the polysaccharide of M. fallax and those of mycobacteria and showed a strong similarity between the latter polysaccharides and that of T. paurometabolum. Structural analyses of the per-O-alkylated alditol fragments derived from the polysaccharides by gas chromatography-mass spectrometry (GC-MS) and 13C nuclear magnetic resonance (NMR) spectroscopy of the intact solubilized polysaccharides demonstrated that the polysaccharides from the two species analyzed contained all the major structural features previously characterized in mycobacterial arabinogalactans. These include (1) the homogalactan of alterning 5-linked galactofuranosyl (Galf) and 6-linked Galf residues, (2) a linear 5-linked arabino furanosyl (Araf), (3) a beta-Araf-(1-->2)-alpha-Araf disaccharide branched on both position 3 and position 5 of an alpha-Araf unit, and (4) a 5-linked-alpha-Araf unit branched on both position 3 and position 5 of an alpha-Araf residue. The polysaccharide from T. paurometabolum possesses additional structural domains composed of a terminal (t) Araf directly linked to either a 5-linked-alpha-Araf or to both position 3 and position 5 of a 3,5-linked alpha-Araf unit. Both the remarkable similarity of arabinogalactans from Corynebacterineae and their genus- and/or species-specificities are reflected in their 13C NMR spectra that may be used as a valuable help in the identification of members of the actinomycete group.  相似文献   

11.
Recent studies have implicated a family of mammalian Toll-like receptors (TLR) in the activation of macrophages by Gram-negative and Gram-positive bacterial products. We have previously shown that different TLR proteins mediate cellular activation by the distinct CD14 ligands Gram-negative bacterial LPS and mycobacterial glycolipid lipoarabinomannan (LAM). Here we show that viable Mycobacterium tuberculosis bacilli activated both Chinese hamster ovary cells and murine macrophages that overexpressed either TLR2 or TLR4. This contrasted with Gram-positive bacteria and Mycobacterium avium, which activated cells via TLR2 but not TLR4. Both virulent and attenuated strains of M. tuberculosis could activate the cells in a TLR-dependent manner. Neither membrane-bound nor soluble CD14 was required for bacilli to activate cells in a TLR-dependent manner. We also assessed whether LAM was the mycobacterial cell wall component responsible for TLR-dependent cellular activation by M. tuberculosis. We found that TLR2, but not TLR4, could confer responsiveness to LAM isolated from rapidly growing mycobacteria. In contrast, LAM isolated from M. tuberculosis or Mycobacterium bovis bacillus Calmette-Guérin failed to induce TLR-dependent activation. Lastly, both soluble and cell wall-associated mycobacterial factors were capable of mediating activation via distinct TLR proteins. A soluble heat-stable and protease-resistant factor was found to mediate TLR2-dependent activation, whereas a heat-sensitive cell-associated mycobacterial factor mediated TLR4-dependent activation. Together, our data demonstrate that Toll-like receptors can mediate cellular activation by M. tuberculosis via CD14-independent ligands that are distinct from the mycobacterial cell wall glycolipid LAM.  相似文献   

12.
The arabinans of the mycobacterial cell wall are key structural and immunological polymers in the context of arabinogalactan (AG) and lipoarabinomannan (LAM) respectively. The three homologous membrane proteins EmbA, EmbB and EmbC are known to be involved in the synthesis of arabinan but their biochemical functions are not understood. Herein we show, that synthesis of LAM, but not AG, ceases after inactivation of embC in Mycobacterium smegmatis by insertional mutagenesis. LAM synthesis is restored upon complementation with the embC wild-type gene. Previously we have shown that the synthesis of the arabinan of AG is affected by embA or embB disruption. Thus the Emb proteins are capable of differential recognition of the galactan or mannan acceptors prior to appropriate arabinosylation. In addition, a combination of genetic and biochemical approaches have allowed us to assign some specific functions to the regions of emb gene products. Complementation of the embCmacr; mutant with a hybrid gene encoding the N-terminus of EmbC and the C-terminus of EmbB resulted in LAM with a lower molecular weight than the wild-type LAM. Structural studies involving enzyme digestion, chromatography and mass spectrometry analyses revealed that the arabinan of the 'LAM' formed in the hybrid was of AG kind rather than LAM type of arabinan.  相似文献   

13.
Monocyte chemotactic protein-3 (MCP-3) is a C–C chemokine which interacts with the CCR1, CCR2 (MCP-1) and CCR3 receptors and has a distinct spectrum of action. The present study was designed to assess whether mycobacterial components were able to induce expression and production of MCP-3 in human monocytes. Mycobacterial lipoarabinomannan (LAM) induced expression of MCP-3 mRNA in human peripheral blood mononuclear cells. The non-mannose-capped version of lipoarabinomannan (AraLAM) was considerably more potent than the mannose-capped version ManLAM or the simpler version phosphatidylinositol mannoside (PLM). Among mononuclear cells, monocytes were responsible for LAM-induced MCP-3 mRNA expression. Whole mycobacteria (Mycobacterium bovisBCG) strongly induced MCP-3 expression. Pretreatment with actinomycin D abolished LAM-induced MCP-3 expression, whereas cycloheximide only partially reduced the expression. LAM-induced MCP-3 expression was associated with the production of immunoreactive PTX3. Interleukin 10 (IL-10) and IL-13 inhibited the induction of MCP-3 by LAM. Thus mycobacterial cell wall components induced expression of MCP-3 in human monocytes. MCP-3, a chemokine active on mononuclear phagocytes, NK cells, T cells and dendritic cells, may be relevant to the induction and expression of immunity against mycobacteria.  相似文献   

14.
Mycobacterium tuberculosis, the causative agent of tuberculosis, produces a heparin-binding haemagglutinin adhesin (HBHA), which is involved in its epithelial adherence. To ascertain whether HBHA is also present in fast-growing mycobacteria, Mycobacterium smegmatis was studied using anti-HBHA monoclonal antibodies (mAbs). A cross-reactive protein was detected by immunoblotting of M. smegmatis whole-cell lysates. However, the M. tuberculosis HBHA-encoding gene failed to hybridize with M. smegmatis chromosomal DNA in Southern blot analyses. The M. smegmatis protein recognized by the anti-HBHA mAbs was purified by heparin-Sepharose chromatography, and its amino-terminal sequence was found to be identical to that of the previously described histone-like protein, indicating that M. smegmatis does not produce HBHA. Biochemical analysis of the M. smegmatis histone-like protein shows that it is glycosylated like HBHA. Immunoelectron microscopy demonstrated that the M. smegmatis protein is present on the mycobacterial surface, a cellular localization inconsistent with a histone-like function, but compatible with an adhesin activity. In vitro protein interaction assays showed that this glycoprotein binds to laminin, a major component of basement membranes. Therefore, the protein was called M. smegmatis laminin-binding protein (MS-LBP). MS-LBP does not appear to be involved in adherence in the absence of laminin but is responsible for the laminin-mediated mycobacterial adherence to human pneumocytes and macrophages. Homologous laminin-binding adhesins are also produced by virulent mycobacteria such as M. tuberculosis and Mycobacterium leprae, suggesting that this adherence mechanism may contribute to the pathogenesis of mycobacterial diseases.  相似文献   

15.
The mycobacterial cell wall component lipoarabinomannan (LAM) has been described as one of the key virulence factors of Mycobacterium tuberculosis. Modification of the terminal arabinan residues of this lipoglycan with mannose caps in M. tuberculosis or with phosphoinositol caps in Mycobacterium smegmatis results in distinct host immune responses. Given that M. tuberculosis typically persists in the phagosomal vacuole after being phagocytosed by macrophages, we performed a proteomic analysis of that organelle after treatment of macrophages with LAMs purified from the two mycobacterial species. The quantitative changes in phagosomal proteins suggested a distinct role for mannose-capped LAM in modulating protein trafficking pathways that contribute to the arrest of phagosome maturation. Enlightened by our proteomic data, we performed further experiments to show that only the LAM from M. tuberculosis inhibits accumulation of autophagic vacuoles in the macrophage, suggesting a new function for this virulence-associated lipid.  相似文献   

16.
The isolation of elements driving high-level expression of foreign genes in mycobacteria would significantly aid characterization of mycobacterial antigens and recombinant vaccine development. Mycobacterium smegmatis is a widely employed host for recombinant mycobacterial gene expression. This report describes the identification of strong promoter elements of M. smegmatis. Fluorescence-activated cell sorting was employed to isolate DNA fragments permitting high-level expression of the Aequorea victoria green fluorescent protein within recombinant M. smegmatis. Ten postulated M. smegmatis promoters were identified which showed activity two to six times that of the strong beta-lactamase promoter of Mycobacterium fortuitum. The utility of one of these promoters for the over-expression of foreign genes in mycobacteria was demonstrated by the efficient purification of the Mycobacterium leprae 35-kDa antigen from recombinant M. smegmatis.  相似文献   

17.
A plasmid shuttle vector for Escherichia coli and mycobacteria was constructed from an E. coli plasmid containing the ColE1 origin, a 2.6-kb PstI fragment from bacteriophage D29 that grows in numerous mycobacterial species, and the kanamycin resistance gene either of Tn903 or of Tn5. The resultant plasmid is 7.63 kb and can be introduced via transformation into Mycobacterium smegmatis with high efficiency. In M. smegmatis the plasmid is stable and apparently present in multiple copies. Bioluminescence (luxA and luxB of Vibrio harveyi and fischeri) has been expressed in M. smegmatis from the aminoglycoside transferase promoter of Tn5. The D29 fragment should carry an origin of replication and some associated genes that act on it since various mutations destroy the ability of this fragment to replicate in M. smegmatis. The fragment was localized on the D29 genome map.  相似文献   

18.
Ligation of mycolic acids to structural components of the mycobacterial cell wall generates a hydrophobic, impermeable barrier that provides resistance to toxic compounds such as antibiotics. Secreted proteins FbpA, FbpB, and FbpC attach mycolic acids to arabinogalactan, generating mycolic acid methyl esters (MAME) or trehalose, generating alpha,alpha'-trehalose dimycolate (TDM; also called cord factor). Our studies of Mycobacterium smegmatis showed that disruption of fbpA did not affect MAME levels but resulted in a 45% reduction of TDM. The fbpA mutant displayed increased sensitivity to both front-line tuberculosis-targeted drugs as well as other broad-spectrum antibiotics widely used for antibacterial chemotherapy. The irregular, hydrophobic surface of wild-type M. smegmatis colonies became hydrophilic and smooth in the mutant. While expression of M. smegmatis fbpA restored defects of the mutant, heterologous expression of the Mycobacterium tuberculosis fbpA gene was less effective. A single mutation in the M. smegmatis FbpA esterase domain inactivated its ability to provide antibiotic resistance. These data show that production of TDM by FbpA is essential for the intrinsic antibiotic resistance and normal colonial morphology of some mycobacteria and support the concept that FbpA-specific inhibitors, alone or in combination with other antibiotics, could provide an effective treatment to tuberculosis and other mycobacterial diseases.  相似文献   

19.
Previously we had demonstrated that the termini of the arabinan component of mycobacterial cell wall arabinogalactan, the site of mycolic acid location, consists mostly of clusters of a pentaarabinofuranoside, [beta-D-Araf-(1----2)-alpha-D-Araf-(1----]2----(3 and 5)-alpha-D-Araf. Subsequently, the same arrangement was shown to dominate the non-reducing ends of lipoarabinomannan (LAM), a key component in the interaction of mycobacteria with host cell. Accordingly, we had proposed that mycobacteria universally elaborate the same Araf-containing motifs in two settings for different pathophysiological purposes. However, we now report that the termini of LAM from the virulent, Erdman, strain of Mycobacterium tuberculosis, unlike those from the attenuated H37Ra strain, are extensively capped with mannosyl (Manp) residues, either a single alpha-D-Manp, a dimannoside (alpha-D-Manp-(1----2)-alpha-D-Manp), or a trimannoside (alpha-D-Manp-(1----2)-alpha-D-Manp-(1----2)-alpha-D-Manp ). The use of monoclonal antibodies demonstrates a clear difference in the antigenicity of the basic and mannose-capped LAM. The possibility that these structures are a factor in the virulence of some strains of M. tuberculosis and represent an example of carbohydrate mimicry in mycobacterial infections is discussed.  相似文献   

20.
Phosphatidylinositol (PI) is an abundant phospholipid in the cytoplasmic membrane of mycobacteria and the precursor for more complex glycolipids, such as the PI mannosides (PIMs) and lipoarabinomannan (LAM). To investigate whether the large steady-state pools of PI and apolar PIMs are required for mycobacterial growth, we have generated a Mycobacterium smegmatis inositol auxotroph by disruption of the ino1 gene. The ino1 mutant displayed wild-type growth rates and steady-state levels of PI, PIM, and LAM when grown in the presence of 1 mM inositol. The non-dividing ino1 mutant was highly resistant to inositol starvation, reflecting the slow turnover of inositol lipids in this stage. In contrast, dilution of growing or stationary-phase ino1 mutant in inositol-free medium resulted in the rapid depletion of PI and apolar PIMs. Whereas depletion of these lipids was not associated with loss of viability, subsequent depletion of polar PIMs coincided with loss of major cell wall components and cell viability. Metabolic labeling experiments confirmed that the large pools of PI and apolar PIMs were used to sustain polar PIM and LAM biosynthesis during inositol limitation. They also showed that under non-limiting conditions, PI is catabolized via lyso-PI. These data suggest that large pools of PI and apolar PIMs are not essential for membrane integrity but are required to sustain polar PIM biosynthesis, which is essential for mycobacterial growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号