首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.

Background

Of the animals typically used to study fertilization-induced calcium dynamics, none is as accessible to genetics and molecular biology as the model organism Caenorhabditis elegans. Motivated by the experimental possibilities inherent in using such a well-established model organism, we have characterized fertilization-induced calcium dynamics in C. elegans.

Results

Owing to the transparency of the nematode, we have been able to study the calcium signal in C. elegans fertilization in vivo by monitoring the fluorescence of calcium indicator dyes that we introduce into the cytosol of oocytes. In C. elegans, fertilization induces a single calcium transient that is initiated soon after oocyte entry into the spermatheca, the compartment that contains sperm. Therefore, it is likely that the calcium transient is initiated by contact with sperm. This calcium elevation spreads throughout the oocyte, and decays monotonically after which the cytosolic calcium concentration returns to that preceding fertilization. Only this single calcium transient is observed.

Conclusion

Development of a technique to study fertilization induced calcium transients opens several experimental possibilities, e.g., identification of the signaling events intervening sperm binding and calcium elevation, identifying the possible roles of the calcium elevation such as the completion of meiosis, the formation of the eggshell, and the establishing of the embryo's axis of symmetry.  相似文献   

3.
4.
5.
6.
This work for the first time compares results obtained with studies of parametric robustness of the Hh- and Dpp/BMP signal cascades responsible for morphogenesis and molecular evolution of the Hh- and Dpp/BMP cascade genes. There is a link between adaptive evolution of genes and those changes in kinetic parameters of the signal cascade models, which are critical for normal functioning of these cascades. Special attention is paid to events of the molecular evolution of the Hh- and Dpp/BMP cascade genes that matched with the emergence of the major taxonomic types and classes of Bilateria.  相似文献   

7.
The dauer larva is a specialized third-larval stage of Caenorhabditis elegans that is long-lived and resistant to environmental insult. The dauer larva is formed in response to a high external concentration of a constitu-tively secreted pheromone. Response to the dauer-inducing pheromone of C. elegans is a promising genetic model for metazoan chemosensory transduction. More than 20 genes have been identified that are required for normal pheromone response. The functions of these genes include production of the pheromone, exposure of sensory neuron endings to the environment, structural and functional integrity of those sensory endings, and the capacity of sensory neurons to make appropriate output. Genetic evidence suggests that two partially redundant sensory pathways act in concert to control dauer formation. At least two classes of chemosensory neurons, ADF and ASI, are implicated in the pheromone response. On the basis of on these findings, a speculative model for the pheromone response is proposed. In this model, the neurons ADF and ASI are pheromone sensors that repress dauer formation in the absence of pheromone and dere-press dauer formation in response to pheromone. It is currently unclear whether or not the two genetically defined sensory pathways both act in ADF and ASI.  相似文献   

8.
9.
C. elegans responds to and discriminates among a large number of volatile and water-soluble chemicals using a few defined chemosensory neurons. The functions of individual sensory neurons have been defined by cell killing experiments, and genes required for responses to subsets of chemicals have been identified. C. elegans has several large families of putative chemosensory receptor genes, and one of these genes has been demonstrated to encode a receptor for a specific odorant. Current work is aimed at identifying additional components of chemosensory neuron development and function.  相似文献   

10.
The molecular and cellular mechanisms that allow adult-stage neurons to regenerate following damage are poorly understood. Recently, axons of motoneurons and mechanosensory neurons in adult C. elegans were found to regrow after being snipped by femtosecond laser ablation. Here, we explore the molecular determinants of adult-stage axon regeneration using the AVM mechanosensory neurons. The first step in AVM axon development is a pioneer axonal projection from the cell body to the ventral nerve cord. We show that regeneration of the AVM axon to the ventral nerve cord lacks the deterministic precision of initial axon development, requiring competition and pruning of unwanted axon branches. Nevertheless, axons of injured AVM neurons regrow to the ventral nerve cord with over 60% reliability in adult animals. In addition, in contrast to initial development, axon guidance during regeneration becomes heavily dependent on cytoplasmic protein MIG-10/Lamellipodin but independent of UNC-129/TGF-beta repellent and UNC-40/DCC receptor, and axon growth during regeneration becomes heavily dependent on UNC-34/Ena and CED-10/Rac actin regulators. Thus, C. elegans may be used as a genetic system to characterize novel cellular and molecular mechanisms underlying adult-stage nervous system regeneration.  相似文献   

11.
12.
13.
Pattern formation during vulval development in C. elegans   总被引:10,自引:0,他引:10  
P W Sternberg  H R Horvitz 《Cell》1986,44(5):761-772
Previous studies have shown that the development of the vulva of the C. elegans hermaphrodite involves six multipotential hypodermal cells as well as the gonadal anchor cell, which induces vulval formation. Our further examination of the interactions among these seven cells has led to the following model. Each hypodermal precursor cell becomes determined to adopt one of its three potential fates; each of these fates is to generate a particular cell lineage. In the absence of cellular interactions each precursor cell will generate the nonvulval cell lineage; an inductive signal from the anchor cell is required for a precursor cell to generate either of the two types of vulval cell lineages. The inductive signal is spatially graded, and the potency of the signal specifies which lineage is expressed by each of the tripotential precursor cells.  相似文献   

14.
Recent studies in Caenorhabditis elegans implicate PcG- and NuRD-like chromatin regulators in the establishment and maintenance of germline-soma distinctions. Somatic cells appear to utilize NuRD-related nucleosome-remodeling factors to overwrite germline-specific chromatin states that are specified through PcG-like activities. The germline, in turn, may rely on an asymmetrically inherited inhibitor to prevent chromatin reorganization that would otherwise erase pluripotency.  相似文献   

15.
Schafer WR 《Current biology : CB》2005,15(17):R723-R729
Because of its small and well-characterized nervous system and amenability to genetic manipulation, the nematode Caenorhabditis elegans offers the promise of understanding the mechanisms underlying a whole animal's behavior at the molecular and cellular levels. In fact, this goal was a primary motivation behind the development of C. elegans as an experimental organism 40 years ago. Yet it has proven surprisingly difficult to obtain a mechanistic understanding of how the C. elegans nervous system generates behavior, despite the existence of a 'wiring diagram' that contains a degree of information about neural connectivity unparalleled in any organism. This review describes three types of information--molecular data on cellular neurochemistry, temporal information about neural activity patterns, and behavioral data on the consequences of neural ablation and manipulation--that, along with genetic analysis, may ultimately lead to a complete functional map of the C. elegans nervous system.  相似文献   

16.
The analysis of genetically mosaic worms, in which some cells carry a wild-type gene and others are homozygous mutant, can reveal where in the animal a gene acts to prevent the appearance of a mutant phenotype. In this primer article, we describe how Caenorhabditis elegans genetic mosaics are generated, identified and analyzed, and we discuss examples in which the analysis of mosaic worms has provided important information about the development of this organism.  相似文献   

17.
18.
Deleterious mutation accumulation plays a central role in evolutionary genetics, conservation biology, human health, and evolutionary medicine (e.g., methods of viral attenuation for live vaccines). It is therefore important to understand whether and how quickly populations with accumulated deleterious mutational loads can recover fitness through adaptive evolution. We used laboratory experimental evolution with four long-term mutation-accumulation (MA) lines of Caenorhabditis elegans nematodes to study the dynamics of such fitness evolution. We previously showed that when homozygous mutant populations are evolved in large population sizes, they can rapidly achieve wild-type fitness through the accumulation of new beneficial or compensatory epistatic mutations. Here, we expand this approach to demonstrate that when replicate lineages are initiated from the same mutant genotype, phenotypic evolution is only sometimes repeatable. MA genotypes that recovered ancestral fitness in the previous experiment did not always do so here. Further, the pattern of adaptive evolution in independently evolved replicates was contingent upon the MA genotype and varied among fitness-related traits. Our findings suggest that new beneficial mutations can drive rapid fitness evolution, but that the adaptive process is rendered somewhat unpredictable by its susceptibility to chance events and sensitivity to the evolutionary history of the starting population.  相似文献   

19.
Cell communication is crucial for many aspects of growth and differentiation during the development of the nematode Caenorhabditis elegans. Two genes, glp-1 and lin-12, mediate a number of known cell-cell interactions. Genetic and molecular analyses of these two genes lead to the conclusion that they are structurally and functionally related. We summarize these studies as well as those involving the identification of other genes that interact with glp-1 and/or lin-12.  相似文献   

20.
Laminins are heterotrimeric (alpha/beta/gamma) glycoproteins that form a major polymer within basement membranes. Different alpha, beta and gamma subunits can assemble into various laminin isoforms that have different, but often overlapping, distributions and functions. In this study, we examine the contributions of the laminin alpha subunits to the development of C. elegans. There are two alpha, one beta and one gamma laminin subunit, suggesting two laminin isoforms that differ by their alpha subunit assemble in C. elegans. We find that near the end of gastrulation and before other basement membrane components are detected, the alpha subunits are secreted between primary tissue layers and become distributed in different patterns to the surfaces of cells. Mutations in either alpha subunit gene cause missing or disrupted extracellular matrix where the protein normally localizes. Cell-cell adhesions are abnormal: in some cases essential cell-cell adhesions are lacking, while in other cases, cells inappropriately adhere to and invade neighboring tissues. Using electron microscopy, we observe adhesion complexes at improper cell surfaces and disoriented cytoskeletal filaments. Cells throughout the animal show defective differentiation, proliferation or migration, suggesting a general disruption of cell-cell signaling. The results suggest a receptor-mediated process localizes each secreted laminin to exposed cell surfaces and that laminin is crucial for organizing extracellular matrix, receptor and intracellular proteins at those surfaces. We propose this supramolecular architecture regulates adhesions and signaling between adjacent tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号