首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Thyroid-stimulating hormone (TSH)-secreting tumors (TSH-omas) are pituitary tumors that constitutively secrete TSH. The molecular genetics underlying this abnormality are not known. We discovered that a knock-in mouse harboring a mutated thyroid hormone receptor (TR) beta (PV; TRbeta(PV/PV) mouse) spontaneously developed TSH-omas. TRbeta(PV/PV) mice lost the negative feedback regulation with highly elevated TSH levels associated with increased thyroid hormone levels (3,3',5-triiodo-l-thyronine [T3]). Remarkably, we found that mice deficient in all TRs (TRalpha1(-/-) TRbeta(-/-)) had similarly increased T3 and TSH levels, but no discernible TSH-omas, indicating that the dysregulation of the pituitary-thyroid axis alone is not sufficient to induce TSH-omas. Comparison of gene expression profiles by cDNA microarrays identified overexpression of cyclin D1 mRNA in TRbeta(PV/PV) but not in TRalpha1(-/-) TRbeta(-/-) mice. Overexpression of cyclin D1 protein led to activation of the cyclin D1/cyclin-dependent kinase/retinoblastoma protein/E2F pathway only in TRbeta(PV/PV) mice. The liganded TRbeta repressed cyclin D1 expression via tethering to the cyclin D1 promoter through binding to the cyclic AMP response element-binding protein. That repression effect was lost in mutant PV, thereby resulting in constitutive activation of cyclin D1 in TRbeta(PV/PV) mice. The present study revealed a novel molecular mechanism by which an unliganded TRbeta mutant acts to contribute to pituitary tumorigenesis in vivo and provided mechanistic insights into the understanding of pathogenesis of TSH-omas in patients.  相似文献   

3.
Mutations in the thyroid hormone receptor (TR) beta gene result in resistance to thyroid hormone (RTH), characterized by reduced sensitivity of tissues to thyroid hormone. To understand which physiological TR pathways are affected by mutant receptors, we crossed mice with a dominantly negative TRbeta mutation (TRbetaPV) with mice carrying a TRbeta null mutation (TRbeta(-/-)) to determine the consequences of the TRbetaPV mutation in the absence of wild-type TRbeta. TRbeta(PV/-) mice are distinct from TRbeta(+/-) mice that did not show abnormalities in thyroid function tests. TRbeta(PV/-) mice are also distinct from TRbeta(PV/+) and TRbeta(-/-) mice in that the latter shows mild dysfunction in the pituitary-thyroid axis, whereas the former exhibit very severe abnormalities, including extensive papillary hyperplasia of the thyroid epithelium, indistinguishable from that observed in TRbeta(PV/PV) mice. Similar to TRbeta(PV/PV) mice, TRbeta(PV/-) mice exhibited impairment in weight gain. Moreover, the abnormal regulation patterns of T3-target genes in the tissues of TRbeta(PV/-) and TRbeta(PV/PV) mice were strikingly similar. Using TR isoforms and PV-specific antibodies in gel shift assays, we found that in vivo, PV competed with TRalpha1 for binding to thyroid hormone response elements in TRbeta(PV/-) mice as effectively as in TRbeta(PV/PV) mice. Thus, the actions of mutant TRbeta are markedly potentiated by the ablation of the second TRbeta allele, suggesting that interference with wild-type TRalpha1-mediated gene regulation by mutant TRbeta leads to severe RTH.  相似文献   

4.
5.
Anterior pituitary (AP) contains some unorthodox multifunctional cells that store and secrete two different AP hormones (polyhormonal cells) and/or respond to several hypothalamic-releasing hormones (HRHs; multiresponsive cells). Multifunctional cells may be involved in paradoxical secretion (secretion of a given AP hormone evoked by a noncorresponding HRH) and transdifferentiation (phenotypic switch between different mature cell types without cell division). Here we combine calcium imaging (to assess responses to the four HRHs) and multiple sequential immunoassay of the six AP hormones to perform a single-cell phenotypic study of thyrotropes in normal male and female mice. Surprisingly, most of the thyrotropes were polyhormonal, containing, in addition to thyrotropin (TSH), luteinizing hormone (40-42%) and prolactin (19-21%). Thyrotropes costoring growth hormone and/or ACTH were found only in females (24% of each type). These results suggest that costorage of the different hormones does not happen at random and that gender favors certain hormone combinations. Our results indicate that thyrotropes are a mosaic of cell phenotypes rather than a single cell type. The striking promiscuity of TSH storage should originate considerable mix-up of AP hormone secretions on stimulation of thyrotropes. However, response to thyrotropin-releasing hormone was much weaker in the polyhormonal thyrotropes than in the monohormonal ones. This would limit the appearance of paradoxical secretion under physiological conditions and suggests that timing of hormone and HRH receptor expression during the transdifferentiation process is finely and differentially regulated.  相似文献   

6.
Targeted ablation of pituitary gonadotropes in transgenic mice.   总被引:3,自引:0,他引:3  
LH, FSH, and TSH are heterodimeric glycoprotein hormones composed of a common alpha-subunit and unique beta-subunits. The alpha-subunit is produced in two distinct specialized cell types of the pituitary gland: gonadotropes, which synthesize LH and FSH, and thyrotropes, which synthesize TSH. We have demonstrated that 313 base pairs of the bovine-alpha subunit promoter direct expression of diphtheria toxin A chain specifically to the gonadotropes in transgenic mice. Animals carrying this transgene generally exhibit reproductive failure and lack of gonadal differentiation, consistent with gonadotrope ablation. Lack of gonadotrope activity was verified by RIA and immunohistochemical staining for LH. The phenotype of these transgenic mice is nearly identical to mice homozygous for the spontaneous mutation, hpg, which is due to a deletion in the gene encoding GnRH. Thyrotrope function was judged normal based on overall growth of the animals, appearance of their thyroids, T4 levels measured by RIA, and immunohistochemical staining for TSH. The ablation of gonadotropes but not thyrotropes suggests that separate cis-acting elements are necessary for expression of the alpha-subunit gene in these two cell types. Pituitary content of ACTH and GH was apparently normal, while PRL synthesis and storage were reduced. Thus, in a pituitary almost completely devoid of gonadotropes, most other pituitary functions were normal. This suggests that most pituitary cells are able to differentiate independently of terminal gonadotrope differentiation and can function in the absence of paracrine signaling provided by gonadotropes.  相似文献   

7.
8.
9.
We have located sequences within the rat growth hormone (rGH) promoter region which are required for pituitary cell-type specific responsiveness to T3 (thyroid hormone, 3,5,3'-L-triiodothyronine). Transient transfections with a series of plasmids containing as few as 202 nucleotides upstream of the start site of the rat growth hormone mRNA showed specific induction by T3 in rat pituitary cell lines. Both the magnitude and the kinetics of this response were similar to those of the endogenous rGH gene, showing a strong early induction followed by a decline in T3 effect. Deletion of an additional 19 base pairs (to -183 relative to the start site) eliminated this induction. Plasmids containing sequences up to -237 or -202 showed significant promoter activity but no T3 responsiveness in transfections of mouse fibroblasts or monkey kidney cells. The presence of high affinity nuclear T3 binding proteins was demonstrated in both cell types. These results show that sequences between -183 and -202 are required for pituitary cell specific T3 regulation of the rGH promoter. The lack of T3 responsiveness in non-pituitary cells suggests that such regulation may be mediated by factors present in pituitary cells and absent in other cells.  相似文献   

10.
Thyrotropin-releasing hormone (TRH) is a major stimulator of thyrotropin-stimulating hormone (TSH) synthesis in the anterior pituitary, though precisely how TRH stimulates the TSHβ gene remains unclear. Analysis of TRH-deficient mice differing in thyroid hormone status demonstrated that TRH was critical for the basal activity and responsiveness to thyroid hormone of the TSHβ gene. cDNA microarray and K-means cluster analyses with pituitaries from wild-type mice, TRH-deficient mice and TRH-deficient mice with thyroid hormone replacement revealed that the largest and most consistent decrease in expression in the absence of TRH and on supplementation with thyroid hormone was shown by the TSHβ gene, and the NR4A1 gene belonged to the same cluster as and showed a similar expression profile to the TSHβ gene. Immunohistochemical analysis demonstrated that NR4A1 was expressed not only in ACTH- and FSH- producing cells but also in thyrotrophs and the expression was remarkably reduced in TRH-deficient pituitary. Furthermore, experiments in vitro demonstrated that incubation with TRH in GH4C1 cells increased the endogenous NR4A1 mRNA level by approximately 50-fold within one hour, and this stimulation was inhibited by inhibitors for PKC and ERK1/2. Western blot analysis confirmed that TRH increased NR4A1 expression within 2 h. A series of deletions of the promoter demonstrated that the region between bp -138 and +37 of the TSHβ gene was responsible for the TRH-induced stimulation, and Chip analysis revealed that NR4A1 was recruited to this region. Conversely, knockdown of NR4A1 by siRNA led to a significant reduction in TRH-induced TSHβ promoter activity. Furthermore, TRH stimulated NR4A1 promoter activity through the TRH receptor. These findings demonstrated that 1) TRH is a highly specific regulator of the TSHβ gene, and 2) TRH mediated induction of the TSHβ gene, at least in part by sequential stimulation of the NR4A1-TSHβ genes through a PKC and ERK1/2 pathway.  相似文献   

11.
Hypothalamic-pituitary-testicular axis in patients with hyperthyroidism   总被引:2,自引:0,他引:2  
To test whether chronic thyroid hormone excess influences the hypothalamic-pituitary-testicular axis, 8 hyperthyroid men were given two identical intravenous GnRH tests. The first test was performed before any treatment had been instituted, the second 6-13 months later, when medical treatment had made the patients euthyroid. Although basal serum luteinizing hormone (LH), follicle-stimulating hormone (FSH) and testosterone (T) levels were of similar magnitudes before and after the medical treatment, LH and FSH responsiveness to gonadotropin-releasing hormone (GnRH), as reflected by the hormone incremental areas (U/l X min), were significantly larger in the thyrotoxic state compared with the euthyroid state (LH incremental areas: 3,999 +/- 665 vs. 2,640 +/- 430, p less than 0.02; FSH incremental areas: 825 +/- 193 vs. 542 +/- 98, p less than 0.05). Furthermore, serum T increased significantly in response to GnRH when the patients were hyperthyroid (T incremental area: 162 +/- 51, p less than 0.02), but failed to do so when they were euthyroid (T incremental area: 92 +/- 53, NS). These results imply that chronic thyroid hormone excess makes the pituitary gonadotrophs 'hypersensitive' to exogenous GnRH. This may in turn explain why human Leydig cells respond more powerful to exogenous GnRH in thyrotoxic patients than in euthyroid subjects.  相似文献   

12.
Although it is well known that plasma concentration of prolactin (PRL) increases during aging in rats, how the anterior pituitary (AP) aging per se affects PRL secretion remains obscure. The objectives of this study were to determine if changes in the pituitary PRL responsiveness to acetylcholine (ACh; a paracrine factor in the AP), as compared with that to other PRL stimulators or inhibitors, contribute to the known age-related increase in PRL secretion, and if protein kinase C (PKC) is involved. We also determined if replenishment with aging-declined hormones such as estrogen/thyroid hormone influences the aging-caused effects on pituitary PRL responses. AP cells were prepared from old (23-24-month-old) as well as young (2-3-month-old) ovariectomized rats. Cells were pretreated for 5 days with diluent or 17beta-estradiol (E(2); 0.6 nM) in combination with or without triiodothyronine (T(3); 10 nM). Then, cells were incubated for 20 min with thyrotropin-releasing hormone (TRH; 100 nM), angiotensin II (AII; 0.2-20 nM), vasoactive intestinal peptide (VIP; 10(-9)-10(-5) M), dopamine (DA; 10(-9)-10(-5) M), or ACh (10(-7)-10(-3) M). Cells were also challenged with ACh, TRH, or phorbol 12-myristate 13-acetate (PMA; 10(-6) M) following PKC depletion by prolonged PMA (10(-6) M for 24 h) pretreatment. We found that estrogen priming of AP cells could reverse the aging-caused effects on pituitary PRL responses to AII and DA. In hormone-replenished cells aging enhanced the stimulation of PRL secretion by TRH and PMA, but not by AII and VIP. Aging also reduced the responsiveness of cells to ACh and DA in suppressing basal PRL secretion, and attenuated ACh inhibition of TRH-induced PRL secretion. Furthermore, ACh suppressed TRH-induced PRL secretion mainly via the PMA-sensitive PKC in the old AP cells, but via additional mechanisms in young AP cells. On the contrary, basal PRL secretion was PKC (PMA-sensitive)-independent in the old AP cells, but dependent in the young AP cells. Taken together, these results suggest differential roles of PMA-sensitive PKC in regulating basal and ACh-regulated PRL responses in old versus young AP cells. The persistent aging-induced differences in AP cell responsiveness to ACh, DA, TRH, and PMA following hormone (E(2)/T(3)) replenishment suggest an intrinsic pituitary change that may contribute, in part, to the elevated in vivo PRL secretion observed in aged rats.  相似文献   

13.
To provide an animal model of central hypothyroidism, mice deficient in the TRH-receptor 1 (TRH-R1) gene were generated by homologous recombination. The pituitaries of TRH-R1-/- mice are devoid of any TRH-binding capacity, demonstrating that TRH-R1 is the only receptor localized on TRH target cells of the pituitary. With the exception of some retardation in growth rate, TRH-R1-/- mice appear normal, but compared with control animals they exhibit a considerable decrease in serum T(3), T(4), and prolactin (PRL) levels but not in serum TSH levels. In situ hybridization histochemistry and real-time RT-PCR analysis revealed that in adult TRH-R1-/- animals TSHbeta-mRNA expression is not impaired whereas PRL mRNA and GH mRNA levels are considerably reduced compared with control mice. The numbers of thyrotropes, somatotropes, and lactotropes, however, are not affected by the deletion of the TRH-R1 gene. The mutant mice are fertile, and the dams nourish their pups well, indicating that TRH is not a decisive factor for suckling-induced PRL release. In situ hybridization and quantitative RT-PCR analysis, furthermore, revealed that, as in control animals, pituitary PRL-mRNA expression in TRH-R1-/- is considerably increased during lactation, albeit strongly reduced as compared with lactating control animals.  相似文献   

14.
Changes in both central and peripheral thyroid hormone (TH) metabolism occur during illness. These changes, known collectively as non-thyroidal illness, are apparently mediated by the proinflammatory cytokines IL-6, TNFalpha and IFNgamma. IL-12 is involved in regulation of IFNgamma and TNFalpha. The aim of this study was to evaluate the role of IL-12 in TH metabolism during illness. We studied TH metabolism both centrally (in the pituitary) and peripherally (in the liver) in IL-12 knock-out (IL-12 (-/-)) and wild type (WT) mice during illness induced by administration of bacterial endotoxin (LPS). LPS induced a similar decrease in serum T (3), T (4) and liver 5'-DI mRNA expression in IL-12 (-/-) and WT mice with the exception of a smaller reduction of serum T (4) in IL-12 (-/-) mice. In the pituitary, the LPS-induced decline in 5'-DI activity in WT mice was not observed in IL-12 (-/-) mice (p < 0.001), whereas the decrease in DII activity tended to be smaller in IL-12 (-/-) mice (p = 0.066). The lower decrease in pituitary activity of both DI and DII in IL-12 (-/-) mice is possibly related to the lower LPS-induced T (4) decrease. In conclusion, IL-12 is involved in the central regulation of the HPT axis during illness but not in the peripheral regulation.  相似文献   

15.
Although TSH stimulates all aspects of thyroid physiology IGF-I signaling through a tyrosine kinase-containing transmembrane receptor exhibits a permissive impact on TSH action. To better understand the importance of the IGF-I receptor in the thyroid in vivo, we inactivated the Igf1r with a Tg promoter-driven Cre-lox system in mice. We studied male and female mice with thyroidal wild-type, Igf1r(+/-), and Igf1r(-/-) genotypes. Targeted Igf1r inactivation did transiently reduce thyroid hormone levels and significantly increased TSH levels in both heterozygous and homozygous mice without affecting thyroid weight. Histological analysis of thyroid tissue with Igf1r inactivation revealed hyperplasia and heterogeneous follicle structure. From 4 months of age, we detected papillary thyroid architecture in heterozygous and homozygous mice. We also noted increased body weight of male mice with a homozygous thyroidal null mutation in the Igf1r locus, compared with wild-type mice, respectively. A decrease of mRNA and protein for thyroid peroxidase and increased mRNA and protein for IGF-II receptor but no significant mRNA changes for the insulin receptor, the TSH receptor, and the sodium-iodide-symporter in both Igf1r(+/-) and Igf1r(-/-) mice were detected. Our results suggest that the strong increase of TSH benefits papillary thyroid hyperplasia and completely compensates the loss of IGF-I receptor signaling at the level of thyroid hormones without significant increase in thyroid weight. This could indicate that the IGF-I receptor signaling is less essential for thyroid hormone synthesis but maintains homeostasis and normal thyroid morphogenesis.  相似文献   

16.
The effects of 17 beta-estradiol (E2) on MtT/F4 pituitary tumor growth and on prolactin (PRL) and growth hormone mRNA expression were analyzed in F344 female rats. E2 (10 mg) stimulated pituitary PRL cell hyperplasia and PRL mRNA, but inhibited growth of the transplantable tumors. The expression of both PRL and growth hormone mRNA levels was increased in the MtT/F4 tumors. The effects of E2 on increasing PRL mRNA levels were more marked in the pituitary compared with the tumors. These results indicate that estrogens stimulate proliferation and PRL expression in the pituitary while inhibiting cell proliferation in the MtT/F4 tumor. E2 also stimulated both growth hormone and PRL mRNA expression in the MtT/F4 transplantable tumor.  相似文献   

17.
Adult male and female mice under normal diet were injected with 3H 1,25(OH)2 vitamin D3 and sacrificed 3.5 h afterwards. Autoradiograms were prepared according to our thaw-mount technique and stained with antibodies to pituitary hormones. Thyrotropes showed strong and extensive nuclear concentration of radioactivity: about 90% of the immunostained thyrotropes were labeled. Lactotropes, somatotropes and gonadotropes showed no or only weak nuclear radioactivity: a subpopulation of 5%-10% of each of these immunostained cell types displayed nuclear labeling that was weak when compared to thyrotropes. Neural lobe pituicytes also showed weak to intermediate nuclear labeling. The results indicate a presence of nuclear receptors for 1,25(OH)2 vitamin D3 in pituitary cell types and suggest direct but differential genomic effects of 1,25(OH)2 vitamin D3 on pituitary hormone secretion. Evidence further suggests the existence of a vitamin D regulated brain-pituitary-thyroid axis.  相似文献   

18.
Thyrotropin (TSH), a glycoprotein hormone of the pituitary consisting of two subunits (alpha and beta), regulates thyroxine (T4) production by the thyroid gland. T4, in turn, regulates TSH biosynthesis and release. We have studied the regulation of the messenger RNA encoding the alpha subunit of TSH by T4 in pituitaries and in a transplantable thyrotropic tumor in mice. Hypothyroid male LAF1 mice bearing the TtT 97 thyrotropic tumor were injected daily with T4 for either 0, 1, 5, 12, or 33 days. Levels of TSH and its unassociated alpha (free alpha) and TSH-beta subunits in the plasma of these animals fell to less than 5% of control values after 33 days. Concentrations of TSH and TSH-beta in both tumor and pituitary also fell to low levels (less than 2% of control), while intracellular concentrations of free alpha subunit remained unchanged. Cellular levels of the mRNA encoding the precursor of the alpha subunit or pre-alpha (alpha mRNA) were measured by cell-free translation followed by electrophoretic analysis of immunoprecipitates of pre-alpha subunit and by nucleic acid hybridization to a radiolabeled cDNA probe specific for the alpha mRNA. In the pituitary, translatable and hybridizable alpha mRNA was decreased slightly after 1 day of T4 and decreased 40-50% after 5 and 12 days. In thyrotropic tumors, both translatable and total alpha mRNA showed a 60% decrease by 1 day and a maximum 85% decrease after 5, 12, and 33 days of T4. Therefore, T4 acts rapidly in vivo to decrease steady state alpha mRNA levels in the thyrotrope, and this decrease is maintained for the duration of treatment with thyroid hormone. This regulatory process is reflected in the sharp decreases in levels of TSH and free alpha subunit in plasma and in lower concentrations of the intact TSH in tissue. In contrast, the maintenance of high tissue concentrations of free alpha subunit after T4 treatment may be a reflection of alterations in a post-translational process specific for the free alpha subunit, as opposed to that of the intact TSH.  相似文献   

19.
20.
Thyroid hormones, T4 and T3, regulate their own production by feedback inhibition of TSH and TRH synthesis in the pituitary and hypothalamus when T3 binds to thyroid hormone receptors (TRs) that interact with the promoters of the genes for the TSH subunit and TRH. All TR isoforms are believed to be involved in the regulation of this endocrine axis, as evidenced by the massive dysregulation of TSH production in mice lacking all TR isoforms. However, the relative contributions of TR isoforms in the pituitary vs. the hypothalamus remain to be completely elucidated. Thus, to determine the relative contribution of pituitary expression of TR-alpha in the regulation of the hypothalamic-pituitary-thyroid axis, we selectively impaired TR-alpha function in TR-beta null mice (TR-beta-/-) by pituitary restricted expression of a dominant negative TR-beta transgene harboring a delta337T mutation. These animals exhibited 10-fold and 32-fold increase in T4 and TSH concentrations, respectively. Moreover, the negative regulation of TSH by exogenous T3 was completely absent and a paradoxical increase in TSH concentrations and TSH-beta mRNA was observed. In contrast, prepro-TRH expression levels in T3-treated TR-beta-/- were similar to levels observed in the delta337/TR-beta-/- mice, and ligand-independent activation of TSH in hypothyroid mice was equivalently impaired. Thus, isolated TR-beta deficiency in TRH paraventricular hypothalamic nucleus neurons and impaired function of all TRs in the pituitary recapitulate the baseline hormonal disturbances that characterize mice with complete absence of all TRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号