首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
We commonly think of the immune system as having a memory. However, memory is always accompanied by a complementary process of oblivion. Is there immune oblivion? In this theoretical paper, I address this question and suggest that oblivion is an integral aspect of memorization. In this context, I suggest that immune memory is an orchestration of reversible and irreversible processes of biological computation through feedback loops. Drawing on the linguistic metaphor, I inquire into the implications of this idea for a better understanding of immune memory and immune deficiency among the elderly.  相似文献   

2.
Immunological memory responses to intracellular protozoa and extracellular helminths govern host resistance and susceptibility to reinfection. Humans and livestock living in parasitic disease endemic regions face continuous exposure from a very early age that often leads to asymptomatic chronic infection over their entire lifespan. Fundamental immunological studies suggest that the generation of T-cell memory is driven by tightly coordinated innate and adaptive cellular immune responses rapidly triggered following initial host infection. A key distinguishing feature of immune memory maintenance between the majority of parasitic diseases and most bacterial or viral diseases is long-term antigen persistence. Consequently, functional parasite immune memory is in a continuous, dynamic flux between activation and deactivation producing functional parasite killing or functional memory cell death. In this sense, T-cell immune memory can be regarded as "memory illusion." Furthermore, due to the finite capacity of memory lymphocytes to proliferate, continuous parasite antigen stimulation may exceed a threshold level at some point in the chronically infected host. This may result in suboptimal effector immune memory leading to host susceptibility to reinfection, or immune dysregulation yielding disease reactivation or immune pathology. The goal of this review is to highlight, through numerous examples, what is currently known about T-cell immune memory to parasites and to provide compelling hypotheses on the survival and maintenance of parasite "memory illusion." These novel concepts are discussed in the context of rationale parasite vaccine design strategies.  相似文献   

3.
We commonly think of the immune system as having a memory. However, memory is always accompanied by a complementary process of oblivion. Is there immune oblivion? In this theoretical paper, I address this question and suggest that oblivion is an integral aspect of memorization. In this context, I suggest that immune memory is an orchestration of reversible and irreversible processes of biological computation through feedback loops. Drawing on the linguistic metaphor, I inquire into the implications of this idea for a better understanding of immune memory and immune deficiency among the elderly.  相似文献   

4.
A key feature of the vertebrate adaptive immune system is acquired immune memory, whereby hosts launch a faster and heightened response when challenged by previously encountered pathogens, preventing full infection. Here, we use a mathematical model to explore the role of ecological and epidemiological processes in shaping selection for costly acquired immune memory. Applying the framework of adaptive dynamics to the classic SIR (Susceptible‐Infected‐Recovered) epidemiological model, we focus on the conditions that may lead hosts to evolve high levels of immunity. Linking our work to previous theory, we show how investment in immune memory may be greatest at long or intermediate host lifespans depending on whether immunity is long lasting. High initial costs to gain immunity are also found to be essential for a highly effective immune memory. We also find that high disease infectivity and sterility, but intermediate virulence and immune period, increase selection for immunity. Diversity in host populations through evolutionary branching is found to be possible but only for a limited range of parameter space. Our model suggests that specific ecological and epidemiological conditions have to be met for acquired immune memory to evolve.  相似文献   

5.
记忆T细胞平行分化模型的理论研究   总被引:4,自引:0,他引:4  
为了从理论上讨论T细胞记忆维持机制的问题,基于T细胞的平行分化假说建立了非线性理论模型,利用此模型,在不同的抗原初值下得到了三种不同类型的应答。用优化剂量的抗原免疫生物体并且抗原存在时记忆能持续很长的时间,而失去抗原的同时将失去记忆,得出记忆T细胞平行分化模型确有记忆机制;并发现记忆强度与剩余抗原量有直接的关系,还进一步讨论了记忆细胞寿命的问题,并对体外情况作了预言。  相似文献   

6.
Protection against infection hinges on a close interplay between the innate immune system and the adaptive immune system. Depending on the type and context of a pathogen, the innate system instructs the adaptive immune system to induce an appropriate immune response. Here, we hypothesize that the adaptive immune system stores these instructions by changing from a naive to an appropriate memory phenotype. In a secondary immune reaction, memory lymphocytes adhere to their instructed phenotype. Because cross-reactions with unrelated Ags can be detrimental, such a qualitative form of memory requires a sufficient degree of specificity of the adaptive immune system. For example, lymphocytes instructed to clear a particular pathogen may cause autoimmunity when cross-reacting with ignored self molecules. Alternatively, memory cells may induce an immune response of the wrong mode when cross-reacting with subsequent pathogens. To maximize the likelihood of responding to a wide variety of pathogens, it is also required that the immune system be sufficiently cross-reactive. By means of a probabilistic model, we show that these conflicting requirements are met optimally by a highly specific memory lymphocyte repertoire. This explains why the lymphocyte system that was built on a preserved functional innate immune system has such a high degree of specificity. Our analysis suggests that 1) memory lymphocytes should be more specific than naive lymphocytes and 2) species with small lymphocyte repertoires should be more vulnerable to both infection and autoimmune diseases.  相似文献   

7.
The secondary immune response is one of the most important features of immune systems. During the secondary immune response, the immune system can eliminate the antigen, which has been encountered by the individual during the primary invasion, more rapidly and efficiently. Both T and B memory cells contribute to the secondary response. In this paper, we only concentrate on the functions of memory B cells. We explore a model describing the memory contributed by the specific long-lived clone which is maintained by continued stimulation with a small amount of antigens sequestered on the surfaces of the follicular dendritic cells (FDC). The behavior of the secondary response provided by the model can be compared with experimental observations. The model shows that memory B cells indeed play an important role in the secondary response. It is found that a single memory cell in a long-lived clone may not be long-lived. In the present note, the influences of relevant parameters on the secondary response are also explored.  相似文献   

8.
For active specific immunotherapy of cancer patients, we designed the autologous virus–modified tumor cell vaccine ATV-NDV. The rationale of this vaccine is to link multiple tumor-associated antigens (TAAs) from individual patient-derived tumor cells with multiple danger signals (DS) derived from virus infection (dsRNA, HN, IFN-). This allows activation of multiple innate immune responses (monocytes, dendritic cells, and NK cells) as well as adaptive immune responses (CD4 and CD8 memory T cells). Preexisting antitumor memory T cells from cancer patients could be activated by antitumor vaccination with ATV-NDV as seen by augmentation of antitumor memory delayed-type hypersensitivity (DTH) responses. In a variety of phase II vaccination studies, an optimal formulation of this vaccine could improve long-term survival beyond what is seen in conventional standard therapies. A new concept is presented which proposes that a certain threshold of antitumor immune memory plays an important role (1) in the control of residual tumor cells which remain after most therapies and (2) for long-term survival of treated cancer patients. This immune memory is T-cell based and most likely maintained by persisting TAAs from residual dormant tumor cells. Such immune memory was prominent in the bone marrow in animal tumor models as well as in cancer patients. Immunization with a tumor vaccine in which individual TAAs are combined with DS from virus infection appears to have a positive effect on antitumor immune memory and on patient survival.  相似文献   

9.
Wodarz D 《Current biology : CB》2003,13(18):1648-1652
Memory is a central characteristic of immune responses. It is defined as an elevated number of specific immune cells that remain after resolution of infection and can protect the host against reinfection. The evolution of immunological memory is subject to debate. The advantages of memory discussed so far include protection from reinfection, control of chronic infection, and the transfer of immune function to the next generation. Mathematical models are used to identify a new force that can drive the evolution of immunological memory: the duration of memory can regulate the degree of competition between different pathogens. While a long duration of memory provides lasting protection against reinfection, it may also allow an inferior pathogen species to persist. This can be detrimental for the host if the inferior pathogen is more virulent. On the other hand, a shorter duration of memory ensures that an inferior pathogen species is excluded. This can be beneficial for the host if the inferior pathogen is more virulent. Thus, while in the absence of pathogen diversity memory is always expected to evolve to a long duration, under specific circumstances, memory can evolve toward shorter durations in the presence of pathogen diversity.  相似文献   

10.
While immunological memory has long been considered the province of T- and B-lymphocytes, it has recently been reported that innate cell populations are capable of mediating memory responses. We now show that an innate memory immune response is generated in mice following infection with vaccinia virus, a poxvirus for which no cognate germline-encoded receptor has been identified. This immune response results in viral clearance in the absence of classical adaptive T and B lymphocyte populations, and is mediated by a Thy1(+) subset of natural killer (NK) cells. We demonstrate that immune protection against infection from a lethal dose of virus can be adoptively transferred with memory hepatic Thy1(+) NK cells that were primed with live virus. Our results also indicate that, like classical immunological memory, stronger innate memory responses form in response to priming with live virus than a highly attenuated vector. These results demonstrate that a defined innate memory cell population alone can provide host protection against a lethal systemic infection through viral clearance.  相似文献   

11.
T细胞记忆的理论研究   总被引:1,自引:0,他引:1  
基于CD8+ T记忆细胞的线性和逆线性分化假说分别建立了数学模型,并研究了各种T细胞亚类的动力学.发现在优化剂量抗原入侵的条件下,两个模型均能产生记忆,并可较好地模拟实验结果.通过进一步模拟发现CD8+ T细胞记忆与抗原的存在紧密相关,再次证实了抗原在维持T细胞记忆中的作用.另外还讨论了记忆细胞寿命的问题.认为逆线性假说具有更强的反应性和记忆性.  相似文献   

12.
Immune memory is the foundation of the practise of vaccination. Research on the molecular and cellular events leading to generation and development of memory T and B lymphocytes explain why there are heightened secondary immune responses after an initial encounter with antigen. In this review, we discuss how clonal expansion, targeted tissue localisation, more efficient antigen recognition and more proficient effector functions contribute to the improved effectiveness of memory cells. Despite the enhanced efficacy of memory cells and the recall immune response, there are numerous experimental and empirical examples in which protection provided by vaccines are short-lived, particularly against pathogens that replicate and cause pathology at their site of entry. In the absence of active immune effector activities, the ability of memory cells to respond quickly enough to control this type of infection is limited. The protective efficacy of bovine herpes virus-1 vaccines in experimental and field challenge conditions are used to illustrate the concept that full protection from disease conferred by vaccination requires the presence of active immune effector mechanisms. Thus, regardless of the many successful technological advances in vaccine design and better understanding of mechanisms underlining induction of memory responses by vaccination, we should recognise that vaccine immunoprophylaxis has limitations. Expectations for vaccines should be realistic and linked to the understanding of host immune responses and knowledge regarding the pathogen and disease pathogenesis.  相似文献   

13.

Background

The ability of an immune system to remember pathogens improves the chance of the host to survive a second exposure to the same pathogen. This immunological memory has evolved in response to the pathogen environment of the hosts. In vertebrates, the memory of previous infection is physiologically accomplished by the development of memory T and B cells. Many questions concerning the generation and maintenance of immunological memory are still debated. Is there a limit to how many memory cells a host can generate and maintain? If there is a limit, how should new cells be incorporated into a filled memory compartment? And how many different pathogens should the immune system remember?

Results

In this study, we examine how memory traits evolve as a response to different pathogen environments using an individual-based model. We find that even without a cost related to the maintenance of a memory pool, the positive effect of bigger memory pool sizes saturates. The optimal diversity of a limited memory pool is determined by the probability of re-infection, rather than by the prevalence of a pathogen in the environment, or the frequency of exposure.

Conclusions

Relating immune memory traits to the pathogen environment of the hosts, our population biological framework sheds light on the evolutionary determinants of immune memory.
  相似文献   

14.
Spleen cells (SC) of mice immunized with sheep red blood cells contain factor that suppresses primary immune response and the formation of immunologic memory. During studies of antigen-specific suppression of the immunogenesis, it has been discovered that suppressor factor of SC non-specifically blocks the development of immunologic memory for the other antigen (rat red cells) without affecting primary immune response to this antigen administration. It is assumed that at an early stage the cells responsible for the formation of immunologic memory are more sensitive to the non-specific effect of suppressor factor than those involved in the generation of primary immune response.  相似文献   

15.
记忆T细胞作为人体免疫系统中的一个组成部分,在免疫应答中发挥着至关重要的作用,因此利用抗独特型抗体制备诱导产生记忆T细胞的疫苗是免疫学领域的一个重要方向。抗独特型抗体Fab段具有与特异性抗原相似的抗原决定簇的结构,其作为抗原替代物制备的疫苗所激发机体产生的记忆T细胞具有特异性强和安全性高的特点,成为一种比较理想的疫苗.就抗独特型抗体与T细胞记忆之间的联系及其应用效果作一简要综述。  相似文献   

16.
Evidence is accumulating that elderly individuals are more susceptible to infection with organisms to which they were previously immune. This indicates that there might be a limit to the persistence of immune memory. This fact is particularly disturbing because the average life expectancy of humans has almost doubled in the past 200 years and is still increasing. We discuss mechanisms that might constrain the persistence of memory T cells and consider whether humans will suffer from memory T-cell exhaustion as life expectancy increases.  相似文献   

17.
While immunological memory has long been considered the province of T- and B- lymphocytes, it has recently been reported that innate cell populations are capable of mediating memory responses. We now show that an innate memory immune response is generated in mice following infection with vaccinia virus, a poxvirus for which no cognate germline-encoded receptor has been identified. This immune response results in viral clearance in the absence of classical adaptive T and B lymphocyte populations, and is mediated by a Thy1+ subset of natural killer (NK) cells. We demonstrate that immune protection against infection from a lethal dose of virus can be adoptively transferred with memory hepatic Thy1+ NK cells that were primed with live virus. Our results also indicate that, like classical immunological memory, stronger innate memory responses form in response to priming with live virus than a highly attenuated vector. These results demonstrate that a defined innate memory cell population alone can provide host protection against a lethal systemic infection through viral clearance.  相似文献   

18.
Innate immunity has recently gained renewed interest in its ability to regulate adaptive immunity. Among the innate immune signals, CpG DNA has revealed its potential as a vaccine adjuvant. However, the cellular mechanism for the effect of CpG DNA on the humoral immune response is not well understood. Here, we investigated the effects of CpG DNA on human B cell differentiation using highly purified B cell subsets: naive, germinal center (GC), and memory B cells. In the in vitro culture system that mimics the primary or secondary immune response in vivo, CpG DNA markedly augmented the proliferation and generation of plasma cells from naive and memory B cells. CpG DNA dramatically increased plasma cell generation from GC B cells. However, CpG DNA did not have effect on memory B cell generation from GC B cells. These results suggest that CpG DNA potentiates the B cell adaptive immune response by enhancing terminal differentiation, but does not affect the generation of memory B cells.  相似文献   

19.
Discoveries made over the past ten years have provided evidence that invertebrate antiparasitic responses may be primed in a sustainable manner, leading to the failure of a secondary encounter with the same pathogen. This phenomenon called “immune priming” or "innate immune memory" was mainly phenomenological. The demonstration of this process remains to be obtained and the underlying mechanisms remain to be discovered and exhaustively tested with rigorous functional and molecular methods, to eliminate all alternative explanations. In order to achieve this ambitious aim, the present study focuses on the Lophotrochozoan snail, Biomphalaria glabrata, in which innate immune memory was recently reported. We provide herein the first evidence that a shift from a cellular immune response (encapsulation) to a humoral immune response (biomphalysin) occurs during the development of innate memory. The molecular characterisation of this process in Biomphalaria/Schistosoma system was undertaken to reconcile mechanisms with phenomena, opening the way to a better comprehension of innate immune memory in invertebrates. This prompted us to revisit the artificial dichotomy between innate and memory immunity in invertebrate systems.  相似文献   

20.
One of the hallmarks of adaptive immunity is the development of a long-term pathogen specific memory response. While persistent memory T cells certainly impact the immune response during a secondary challenge, their role in unrelated infections is less clear. To address this issue, we utilized lymphocytic choriomeningitis virus (LCMV) and Listeria monocytogenes immune mice to investigate whether bystander memory T cells influence Leishmania major infection. Despite similar parasite burdens, LCMV and Listeria immune mice exhibited a significant increase in leishmanial lesion size compared to mice infected with L. major alone. This increased lesion size was due to a severe inflammatory response, consisting not only of monocytes and neutrophils, but also significantly more CD8 T cells. Many of the CD8 T cells were LCMV specific and expressed gzmB and NKG2D, but unexpectedly expressed very little IFN-γ. Moreover, if CD8 T cells were depleted in LCMV immune mice prior to challenge with L. major, the increase in lesion size was lost. Strikingly, treating with NKG2D blocking antibodies abrogated the increased immunopathology observed in LCMV immune mice, showing that NKG2D engagement on LCMV specific memory CD8 T cells was required for the observed phenotype. These results indicate that bystander memory CD8 T cells can participate in an unrelated immune response and induce immunopathology through an NKG2D dependent mechanism without providing increased protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号