首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Mannitol is dissimilated by Aerobacter aerogenes via an inducible pathway initiated by a phosphotransferase system dependent upon phosphoenolpyruvate as the phosphoryl donor. A mutational block in this pathway can be suppressed either at the phenotypic level by induction of d-arabitol dehydrogenase, an enzyme fortuitously capable of converting mannitol to fructose, or genotypically by a constitutive mutation in the d-arabitol system.  相似文献   

2.
G A Daniels  G Drews    M H Saier  Jr 《Journal of bacteriology》1988,170(4):1698-1703
In photosynthetic bacteria such as members of the genera Rhodospirillum, Rhodopseudomonas, and Rhodobacter a single sugar, fructose, is transported by the phosphotransferase system-catalyzed group translocation mechanism. Previous studies indicated that syntheses of the three fructose catabolic enzymes, the integral membrane enzyme II, the peripheral membrane enzyme I, and the soluble fructose-1-phosphate kinase, are coordinately induced. To characterize the genetic apparatus encoding these enzymes, a Tn5 insertion mutation specifically resulting in a fructose-negative, glucose-positive phenotype was isolated in Rhodobacter capsulatus. The mutant was totally lacking in fructose fermentation, fructose uptake in vivo, phosphoenolpyruvate-dependent fructose phosphorylation in vitro, and fructose 1-phosphate-dependent fructose transphosphorylation in vitro. Extraction of the membrane fraction of wild-type cells with butanol and urea resulted in the preparation of active enzyme II free of contaminating enzyme I activity. This preparation was used to show that the activity of enzyme I was entirely membrane associated in the parent but largely soluble in the mutant, suggesting the presence of an enzyme I-enzyme II complex in the membranes of wild-type cells. The uninduced mutant exhibited measurable activities of both enzyme I and fructose-1-phosphate kinase, which were increased threefold when it was grown in the presence of fructose. Both activities were about 100-fold inducible in the parental strain. Although the Tn5 insertion mutation was polar on enzyme I expression, fructose-1-phosphate kinase activity was enhanced, relative to the parental strain. ATP-dependent fructokinase activity was low, but twofold inducible and comparable in the two strains. A second fru::Tn5 mutant and a chemically induced mutant selected on the basis of xylitol resistance showed pleiotropic loss of enzyme I, enzyme II, and fructose-1-phosphate kinase. These mutants were used to clone the fru regulon by complementing the negative phenotype with a wild-type cosmid bank.  相似文献   

3.
Ribitol+ strains of Escherichia coli acquire the ability to utilize xylitol by mutating to constitutive production of the coordinately controlled ribitol catabolic enzymes ribitol dehydrogenase (RDH) and D-ribulokinase (DRK). Such strains concomitantly acquire toxicity to galacitol and L-arabitol, and to D-arabitol if they are unable to utilize it for growth. Strains selected for resistance to these polyols have DRK structural gene mutations or other mutations that eliminate the constitutive production of DRK, consistent with the view that DRK phosphorylates those polyols to toxic substances. Ribitol+ strains selected for growth on 8 mM xylitol fail to grow on 30 mM xylitol. A product of ribitol and xylitol catabolism represses synthesis of RDH, an enzyme required for growth on xylitol. At 30 mM xylitol, greater than 99% of RDH synthesis is repressed. Strains that grow on 8 mM xylitol can mutate to grow on 30 mM xylitol. Such mutants, relieved of this repression, overproduce RDH, resulting in good growth on the poor substrate, xylitol, but poor growth on the normal substrate, ribitol.  相似文献   

4.
Expression of catabolite sensitive operons is repressed in E. coli mutants devoid of HPr--a component of glucose transport system. The ptsH mutants do not utilize the substrates for phosphoenolpyruvate dependent phosphotransferase system (PTS) except for fructose. Besides that, the mutants are deficient in utilization of many substrates entering the bacteria via the other transport systems. The ptsS mutation mapped in the region of the fructose regulon on the 46th min of the chromosomal map restores the growth of ptsH mutants on all substrates. The accumulation and PEP-dependent phosphorylation of proteins substrates of PTS is also restored. The synthesis of the fructose specific phosphotransferase system becomes constitutive under the effect of ptsS mutation. The mutation is supposed to impair the regulatory region of the fructose regulon.  相似文献   

5.
Sensitivity to various oxidants was determined for Escherichia coli strains JTG10 and 821 deficient in biosynthesis of glutathione (gsh-) and their common parental strain AB1157 (gsh+). The three strains showed identical sensitivity to H2O2. E. coli 821 was more resistant than AB1157 and JTG10 to menadione, cumene hydroperoxide, and N-ethylmaleimide. This resistance was not related to the gsh mutation because the other gsh- mutant and the parental strain showed similar sensitivity to these oxidants. The measured activities of NADPH:menadione diaphorase and glucose-6-phosphate dehydrogenase and the extracellular level of menadione suggested that the enhanced resistance of E. coli 821 to menadione might be due to decreased diaphorase activity, but not to a lowered rate of menadione uptake.  相似文献   

6.
D-Arabitol catabolic pathway in Klebsiella aerogenes   总被引:6,自引:5,他引:1       下载免费PDF全文
Klebsiella aerogenes strain W70 has an inducible pathway for the degradation of d-arabitol which is comparable to the one found in Aerobacter aerogenes strain PRL-R3. The pathway is also similar to the pathway of ribitol catabolism in that it is composed of a pentitol dehydrogenase, d-arabitol dehydrogenase (ADH), and a pentulokinase, d-xylulokinase (DXK). These two enzymes are coordinately controlled and induced in response to d-arabitol, the apparent inducer of synthesis of these enzymes. We obtained mutants which lacked a functional d-xylose pathway and were constitutive for the ribitol catabolic pathway. These mutants were able to grow on the unusual pentitol, xylitol, only if they contained the functional DXK of the d-arabitol pathway. This provided us with a specific selection technique for DXK(+) transductants. As in A. aerogenes, mutants constitutive for ADH were able to use this enzyme to convert the hexitol d-mannitol to d-fructose. With mutants blocked in the normal d-mannitol catabolic pathway, growth on d-mannitol became a test for ADH constitutivity. Growth of such mutants on xylitol, d-arabitol, and d-mannitol was utilized to classify transductants in mapping, by transductional analysis, the loci involved in d-arabitol utilization. Three-point crosses gave the order dalK-dalD-dalC, where dalK is the DXK structural gene, dalD is the ADH structural gene, and dalC is a regulatory site controlling synthesis of both enzymes.  相似文献   

7.
1. A method is described for measuring the rate of phosphoenolpyruvate-dependent phosphotransferase activity for a variety of hexoses in toluene-treated suspensions of Escherichia coli. 2. The specific activities of the phosphotransferases that catalyse the phosphorylation of hexoses are greatly affected by the carbon source for growth. 3. In all strains of E. coli tested, fructose phosphotransferase activity is induced by growth on fructose. 4. Strains of E. coli differ greatly in the rate at which they phosphorylate glucose, but all strains possess at least a low glucose phosphotransferase activity under any tested condition of growth. Glucose phosphotransferase activity is further induced by growth on glucose; this does not occur in a mutant that lacks the ability to take up methyl alpha-d-[(14)C]glucopyranoside and hence grows poorly on glucose. 5. When growing on fructose, two strains of E. coli synthesize the inducible glucose phosphotransferase system gratuitously, and to specific activities higher than observed during growth on glucose. A phosphotransferase catalysing the phosphorylation of mannose is similarly induced.  相似文献   

8.
Three genes, designated as fruC, fruD and fruI, were predicted to encode polypeptides homologous to fructose-specific enzyme II (II(Fru)) of the phosphoenolpyruvate-dependent sugar:phosphotransferase system, and were cloned from Streptococcus mutans, the primary etiological agent of human dental caries. The fruC and fruD genes encoded domains BC and domain A of II(Fru), respectively. The fruI gene encoded IICBA(Fru). Northern hybridization and slot blot analysis showed that expression of fruI was inducible by sucrose and fructose, while fruCD were expressed constitutively and at much lower levels. Inactivation of either fruI or fruCD alone, or of both fruCD and fruI, had no major impact on growth on fructose at a concentration of 0.5% (w/v). However, when the strains were grown with 0.2% fructose as the sole carbohydrate source, a significant decrease in the growth rate was seen with the fruCD/fruI double mutants. Assays of sugar:phosphotransferase activity showed that the fruCD/fruI double mutants had roughly 30% of the capacity of the wild-type strain to transport fructose via the phosphoenolpyruvate-dependent sugar:phosphotransferase system. Xylitol toxicity assays indicated that the inducible fructose permease was responsible for xylitol transport.  相似文献   

9.
A wild-type strain of Enterococcus faecalis and its mutants resistant to 2-deoxy-D-glucose (2DG) were examined for the presence of phosphoenolpyruvate:carbohydrate phosphotransferase systems (PTSs) with 12 carbohydrates, which were utilized by the organism, as the substrates. The wild-type strain possessed a constitutive mannose-PTS, which was reactive with glucose, mannose, glucosamine, 2DG and fructose. This activity was absent in the mutants. No independent glucose- or fructose-PTS was found in the mannose-PTS-defective mutants. The mutants, however, showed a low level of a constitutive PTS activity with maltose, suggesting the existence of an independent maltose-PTS in the organism. Both wild-type and mutant strains possessed inducible lactose-, mannitol-, and trehalose-PTSs. Lactose-PTS was induced by either lactose or galactose in the parent, but only by lactose in the mutants. The lactose-PTS was not reactive with galactose, and no separate galactose-PTS was present. These observations suggest that the inducer for lactose-PTS, probably being galactose 6-phosphate, may not be formed from galactose in the organism when the constitutive mannose-PTS is lost by mutation.  相似文献   

10.
Wild-type Aerobacter aerogenes 1033 is unable to utilize xylitol. A succession of mutants was isolated capable of growth on this compound (0.2%) at progressively faster rates. Whereas the ability to utilize xylitol was achieved in the first-stage mutant (X1) by constitutive production of ribitol dehydrogenase (for which xylitol is a substrate but not an inducer), the basis for enhanced utilization of xylitol in the second-stage mutant (X2) was an alteration of ribitol dehydrogenase. This enzyme was purified from the various mutants. The apparent K(m) for xylitol was 0.12 m with X2 enzyme and 0.29 m with X1 enzyme. The X2 enzyme was also less heat stable and, at 0.05 m substrate concentration, had a higher ratio of activity with xylitol compared to ribitol than did the X1 enzyme. The third mutant (X3), with an even faster growth rate on xylitol, produced a ribitol dehydrogenase indistinguishable physically or kinetically from that of X2. However, X3 produced constitutively an active transport system which accepts xylitol. The usual function of this system is apparently for the transport of d-arabitol since the latter is not only a substrate but also an inducer of the transport system in parental strains of X3. The sequence of mutations described herein illustrates how genes belonging to different metabolic systems can be mobilized to serve a new biochemical pathway.  相似文献   

11.
A glycerol-specific phenotypic revertant isolated from a mutant of Escherichia coli missing enzyme I of the phosphoenolpyruvate phosphotransferase system was studied. This revertant is capable of producing higher levels of glycerol kinase and the protein mediating the facilitated diffusion of glycerol (facilitator) than wild-type cells. The kinase of the revertant is indistinguishable from the wild-type enzyme with respect to its sensitivity to feedback inhibition by fructose-1,6-diphosphate, its pH optimum, and its turnover number. The synthesis of glycerol kinase in strains bearing the suppressor locus is resistant to catabolite repression. The suppressor mutation mapped at the known glpK locus. Thus, it is suggested that the mutation occurred in the promoter of the operon specifying the kinase and the facilitator.  相似文献   

12.
A methyl methane sulfonate (MMS)-sensitive mutant of Escherichia coli AB 1157 was obtained by N-methyl-N'-nitro-N-nitrosoguanidine treatment. The mutant strain, AB 3027, is defective both in endonuclease activity for apurinic sites in deoxyribonucleic acid (DNA) and in DNA polymerase I, as shown by direct enzyme assays. Derivative strains, which retained the deficiency in endonuclease activity for apurinic sties (approximately 10% of the wild-type enzyme level) but had normal DNA polymerase I activity, were obtained by P1-mediated transduction (strain NH5016) or by selection of revertants to decreased MMS sensitivity. These endonuclease-deficient strains are more MMS-sensitive than wild-type strains. Revertants of these deficients strains to normal MMS resistance were isolated. They had increased levels of the endonuclease activity but did not attain wild-type levels. The data suggest that endonuclease for apurinic sites is active in repair of lesions introduced in DNA as a consequence of MMS treatment. Two different endonucleases that specifically attack DNA containing apurinic sites arepresented in E coli K-12. A heat-labile activity, sensitive to inhibition by ethylenediaminetetraacetate, accounts for 90% of the total endonuclease activity for apurinic sties in crude cell extracts. The residual 10% is due to a more heat-resistant activity, refractory to ethylenediaminetetraacetate inhibition. The AB3027 and NH5016 strains have normal amounts of the latter endonuclease but no or very little of the former activity.  相似文献   

13.
According to Kogoma's model of DNA recombination by replication, the PriA protein is involved in the RecBCD pathway of double-strand break (DSB) repair, which is associated with extensive DNA degradation, at the stage of primosome assembly in D-loops (intermediates of strand exchange at the ends of DSB) for the subsequent switch to DSB-induced DNA resynthesis. Comparable data on possible involvement of the PriA protein in the repair of gamma-ray-induced lethal lesions in cells of the wild-type strain of Escherichia coli (strain AB1157) and in two radiation-resistant mutants Gamr445 and Gamr444 were obtained. In all the three strains examined, the null priA2::kan mutation in the structural priA gene was shown to markedly enhance the radiation sensitivity, causing a two- to threefold increase in the slopes of linear dose-survival curves. In the AB1157 strain, the inactivation of PriA is manifested most clearly in the range of low doses (up to 0.15 kGy) when the priA2::kan mutation had only a slight effect on the radiation resistance of Gamr mutants. It can be assumed that, in these mutants with a decreased level of postradiation DNA degradation, the PriA-dependent RecBCD pathway of DSB repair associated with extensive DNA resynthesis is not essential for the repair of lethal lesions at low doses. However, this pathway becomes crucial at higher doses (> 0.5 kGy) even for radiation-resistant strains, especially for the most resistant Gamr444 mutant.  相似文献   

14.
Escherichia coli NZN111 is blocked in the ability to grow fermentatively on glucose but gave rise spontaneously to a mutant that had this ability. The mutant carries out a balanced fermentation of glucose to give approximately 1 mol of succinate, 0. 5 mol of acetate, and 0.5 mol of ethanol per mol of glucose. The causative mutation was mapped to the ptsG gene, which encodes the membrane-bound, glucose-specific permease of the phosphotransferase system, protein EIICB(glc). Replacement of the chromosomal ptsG gene with an insertionally inactivated form also restored growth on glucose and resulted in the same distribution of fermentation products. The physiological characteristics of the spontaneous and null mutants were consistent with loss of function of the ptsG gene product; the mutants possessed greatly reduced glucose phosphotransferase activity and lacked normal glucose repression. Introduction of the null mutant into strains not blocked in the ability to ferment glucose also increased succinate production in those strains. This phenomenon was widespread, occurring in different lineages of E. coli, including E. coli B.  相似文献   

15.
A mutant delta ptsH of Escherichia coli was used to obtain a mutation which damages a function of cytoplasmic specific component of the fructose phosphotransferase system--FPr protein. This mutation was mapped using a number of genetical methods. In conjugational crosses the mutation was localized at 47 min of the E. coli chromosomal map. The gene responsible for this defect was designated fpr. In P1 mediated transduction and in conjugational three-factorial crosses the order of the markers in this region was established as: gyrA-ompC-fpr-ptsF-...-his. The frequency of cotransduction of the fpr gene was 4.5 and 35% with gyrA and ompC markers, respectively. In fructose containing minimal medium the doubling time of the ptsH+fpr mutant was lower than that of the delta ptsHfpr+ mutant. Also, the doubling time of the fpr mutant depends on concentration of fructose in growth medium but is independent of the amount of this sugar in the case of the delta ptsH mutant.  相似文献   

16.
A ribitol dehydrogenase (ribitol-NAD(+) oxidoreductase, EC. 1.1.1.56) having increased specificity and catalytic efficiency toward xylitol was isolated from mutant strains of Klebsiella aerogenes, which were selected for increased growth rate on xylitol over the ribitol dehydrogenase constitutive wild-type organism. 2. The mutant enzyme was purified to homogeneity and its general characteristics were compared with those of the previously purified wild-type enzyme. 3. Initial-velocity steady-state kinetic parameters were determined for both wild-type and mutant enzymes and the results compared. 4. The results are interpreted in terms of a model in which the mutant enzyme results from a small change of amino acid sequence, which affects both the stability and conformational equilibria of the molecule.  相似文献   

17.
Changes in intracellular cAMP concentration play important roles in Haemophilus influenzae , regulating both sugar utilization and competence for natural transformation. In enteric bacteria, cAMP levels are controlled by the phosphoenolpyruvate:glycose phosphotransferase system (PTS) in response to changes in availability of the preferred sugars it transports. We have demonstrated the existence of a simple PTS in H. influenzae by several methods. We have cloned the H. influenzae ptsI gene, encoding PTS Enzyme I; genome analysis locates it in a pts operon structurally homologous to those of enteric bacteria. In vitro phosphorylation assays confirmed the presence of functional PTS components. A ptsI null mutation reduced fructose uptake to 1% of the wild-type rate, and abolished fructose fermentation even when exogenous cAMP was provided. The ptsI mutation also prevented fermentation of ribose and galactose, but utilization of these cAMP-dependent sugars was restored by addition of cAMP. In wild-type cells the non-metabolizable fructose analogue xylitol prevented fermentation of these sugars, confirming that the fructose PTS regulates cAMP levels. Development of competence under standard inducing conditions was reduced 250-fold by the ptsI mutation, unless cells were provided with exogenous cAMP. Competence is thus shown to be under direct nutritional control by a fructose-specific PTS.  相似文献   

18.
A novel mutation fruS localised in the fru operon has been obtained. The mutation uncouples expression of genes determining fructose specific uptake and utilization. In the fruS bacteria fruA and fruF genes (coding for enzyme II and FPr, respectively) become constitutive, while the fruK gene (responsible for fructose-1-phosphate kinase synthesis) remains inducible. In contrast to the already known mutations making the whole fru operon constitutive, the fruS mutation: 1) does not lead to xylitol sensitivity; 2) does not depress growth on lactate, pyruvate and alanine; 3) does not decrease PEP-synthase activity.  相似文献   

19.
Escherichia coli cells were killed by visible light irradiation in the presence of the photosensitizing dye, toluidine blue. Two uvrB mutant strains of E. coli K-12 (AB1885 and N3-1) were much more sensitive than the isogenic uvrA and uvrC strains to treatment with toluidine blue plus light, suggesting that the uvrB+ gene product was involved in repair of DNA damage induced by the treatment. The uvrB+ gene cloned in a high- or low-copy-number plasmid was transformed into the uvrB strain (AB1885). Although all the transformants showed the same resistance as its wild-type strain (AB1157) to UV irradiation, they were as sensitive as AB1885 was to treatment with toluidine blue plus light. The two uvrB strains were more sensitive to sodium dodecyl sulfate than the other strains, suggesting that these strains had a defect in the cell surface. A sodium dodecyl sulfate-resistant revertant obtained from AB1885 was more resistant than AB1885 was to treatment with toluidine blue plus light. The two uvrB strains (AB1885 and N3-1) appear to have a defective gene (tentatively called dvl) different from uvrB. Its map position was around 7 min on the E. coli map.  相似文献   

20.
In Salmonella typhimurium, glucose, mannose, and fructose are normally transported and phosphorylated by the phosphoenolpyruvate:sugar phosphotransferase system. We have investigated the transport of these sugars and their non-metabolizable analogs in mutant strains lacking the phospho-carrier proteins of the phosphoenolpyruvate:sugar phosphotransferase system, the enzymes I and HPr, to determine whether the sugar-specific, membrane-bound components of the phosphonenolpyruvate: sugar phosphotransferase system, the enzymes II, can catalyze the uptake of these sugars in the absence of phosphorylation. This process does not occur. We have also isolated mutant strains which lack enzyme I and HPr, but have regained the ability to grow on mannose or fructose. These mutants contained elevated levels of mannokinase (fructokinase). In addition, growth on mannose required constitutive synthesis of the galactose permease. When strains were constructed which lacked the galactose permease, they were unable to grow even on high concentrations of mannose, although elevated levels of mannokinase (fructokinase) were present. These results substantiate the conclusion that the enzymes II of the phosphoenolpyruvate:sugar phosphotransferase system are unable to carry out facilitated diffusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号