首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vacuolar and cytoplasmic inorganic phosphate (Pi) contentof the mature regions of maize roots was measured by a 31P NMRtechnique which used an external standard to avoid the needfor tissue extraction and which exploited the relatively rapidrelaxation of cytoplasmic Pi in order to improve the detectionof this pool in fully-vacuolated cells. In mature roots of maize growing with abundant external phosphate,the concentration of Pi in the cytoplasm was approximately 6.5mol m–3. When these plants were deprived of external phosphate,the vacuolar Pi content of the roots decreased rapidly, butthe cytoplasmic Pi concentration initially remained constantand did not begin to decline until P-stress became severe. Calculationsshow that withdrawal of Pi from the vacuoles into the cytoplasmunder these conditions would be against an electrochemical gradient. During P-starvation, an increased capacity for Pi influx developed,preceding any detectable change in the cytoplasmic Pi contentof the roots. This response is considered in terms of paralleleffects on transport sites for phosphate at the plasmalemmaand at the tonoplast. Comparisons of simultaneous rates of influxand net uptake implied that phosphate efflux accounted for <10% of influx in plants of a steady or declining P-status. However,direct measurements of efflux suggested that this process maybe temporarily accelerated when plants are recovering from P-stress. Key words: P-nutrition, subcellular compartmentation  相似文献   

2.
This paper examines the control of phosphate uptake into Chara corallina. Influxes of inorganic phosphate (Pi) into isolated single internodal cells were measured with 32Pi. Pretreatment of cells without Pi for up to 10 d increased Pi influx. However, during this starvation the concentrations of Pi in both the cytoplasm and the vacuole remained quite constant. When cells were pre-treated with 0.1 mM Pi, the subsequent influx of Pi was low. Under these conditions the Pi concentrations in the cytoplasm was almost the same as that of Pi-starved cells, but vacuolar Pi increased with time. Transfer of cells from medium containing 0.1 mM Pi to Pi-free medium induced an increase of Pi influx within 3 d irrespective of the concentration of Pi in the vacuole.During Pi starvation, neither the membrane potential nor the cytoplasmic pH changed. Manipulation of the cytoplasmic pH by weak acids or ammonium decreased the Pi influx slightly.Pi efflux was also measured, using cells loaded with 32Pi. Addition of a low concentration of Pi in the rinsing medium rapidly and temporarily induced an increase in the efflux.The results show that Pi influx is controlled by factors other than simple feedback from cytoplasmic or vacuolar Pi concentrations or thermodynamic driving forces for H+-coupled Pi uptake. It is suggested that uptake of Pi is controlled via the concentration of Pi in the external medium through induction or repression of two types of plasma membrane Pi transporters.Key words: Chara corallina, membrane transport, phosphate influx, phosphate starvation   相似文献   

3.
Cytoplasmic phosphomonoesters and inorganic phosphate, as well as vacuolar inorganic phosphate and polyphosphates, gave rise to the major peaks in 31P nuclear magnetic resonance (NMR) spectra of the marine macroalgae Enteromorpha sp., Ceramium sp., and Ulva lactuca which were collected from the sea. In contrast, NMR-visible polyphosphates were lacking in Pylaiella sp. and intracellular vacuolar phosphate seemed to act as the main phosphorus store in this organism. In laboratory experiments, polyphosphates decreased in growing U. lactuca which was cultivated in continuous light under phosphate-deficient conditions. In contrast, the same organism cultivated in seawater with added phosphate and ammonium, accumulated phosphate mainly in the form of polyphosphates. When nitrate was provided as the only nitrogen source, accumulation of polyphosphates in the algae decreased with increasing external nitrate concentration. From the chemical shift of the cytoplasmic Pi peak, the cytoplasmic pH of superfused preparations of Ulva was estimated at 7.2. The vacuolar pH, determined from the chemical shifts of the vacuolar Pi and the terminal polyphosphate peaks, was between 5.5 and 6.0. The intracellular nitrate and ammonium levels in U. lactuca were determined by 14N NMR. Both nitrogen sources were taken up and stored intracellularly; however, the uptake of ammonium was much faster than that of nitrate.  相似文献   

4.
The effects of aluminum ions on the generation of mobile inorganic phosphate (Pi) within the cells of excised maize (Zea mays L.) root tips were examined using 31P-nuclear magnetic resonance (31P-NMR) spectroscopy. When perfused with a solution containing 50 mM glucose and 0.1–5.0 mM Ca2+ at pH 4.0, 3–5-mm-long excised maize root tips from 3-d-old seedlings showed a significant (approx. 100%) increase in the amount of mobile Pi, (primarily vacuolar) over a period of 30 h. This increase was above that which can be accounted for by the hydrolysis of endogenous sugar phosphates and nucleotides. A change of the pH of the perfusion solution to 7.0 reduced the increase in Pi to approx. 50%. Omission of Ca2+ in the solution at pH 4.0 caused the mobile Pi to increase to about 170%. However, the presence of Al3+ or both Ca2+ and Al3+ in the solution resulted in a significant loss (35–50%) of mostly vacuolar Pi over the same period of time. When root tips containing up to 65% of newly released Pi, produced after 20 h perfusion, were exposed to Al3+, no additional increase in the level of the mobile-Pi signal area was noted. Exposure to Al3+ with Ca2+ and glucose under hypoxia at pH 4.0 resulted in a threefold decrease in intracellular Pi content after the root tips were returned to aerobic conditions. These results indicate that external pH plays an important role in the generation of mobile intracellular Pi and that the presence of both Ca2+ and Al3+ can independently suppress the production of this excess Pi and ultimately reduce the vacuolar Pi.Abbreviations and symbols NMR nuclear magnetic resonance - Pi morganic phosphate - UDPG uridine diphosphoglucose - chemical shift  相似文献   

5.
Inorganic phosphate (Pi) uptake across the vacuolar membrane of intact vacuoles isolated from Catharanthus roseus suspension-cultured cells was measured. Under low Pi status, Pi uptake into the vacuole was strongly activated compared to high Pi status. Since Pi uptake across the vacuolar membrane is correlated with H+ pumping, we examined the dependency of H+ pumping on plant Pi status. Both H+ pumping and the activities of the vacuolar H+-pumps, the V-type H+-ATPase and the H+-PPase were enhanced under low Pi status. Despite this increase in H+ pumping, Western blot analysis showed no distinct increase in the amount of proton pump proteins. Possible mechanisms for the activation of Pi uptake into the vacuole under low Pi status are discussed. Miwa Ohnishi and Tetsuro Mimura contributed equally to this work.  相似文献   

6.
A unique variant strain of Chara corallina, which contains little inorganic phosphate in the vacuole ([Pi]v) was isolated. The level of cytoplasmic inorganic phosphate ([Pi]c) in these cells was the same as that in normal cells. Using these unique cells, we studied the change in [Pi]c and the effect of Pi on the activities of electrogenic H+-pumps associated with the plasma membrane and tonoplast. Upon illumination, the plasma membrane of C. corallina became hyperpolarized by 15 mV, the pH of the vacuolar sap decreased by 0.5 unit, and [Pi]c decreased by 30% with a similar time course. The activities of the electrogenic H +-pump in the plasma membrane and the ATP and PPi-dependent H+-transport in the tonoplast were noncompetitively inhibited by Pi with Ki values of, in the order given, 21.3 mM, 22.1 mM and 37.7 mM. From the kinetics study we calculated that the electrogenic H+-pump in the plasma membrane and the ATP and PPi-dependent H+ transport in the tonoplast were activated by, again in this order, 13%, 13% and 9%, in accordance with the decrease in [Pi]c. We propose that the change in [Pi]c is one of the regulators of photosynthesis-mediated activation of the H+-pumps in the plasma membrane and the tonoplast in C. corallina upon illumination.  相似文献   

7.
The addition of an elicitor (glucan) to Phaseolus vulgaris cell suspension cultures increased the formation of the phytoalexin phaseollin. Intracellular pH and phosphate concentrations were studied with 31P nuclear magnetic resonance spectroscopy on elicitor-treated cells which were aerated during the nuclear magnetic resonance measurement. The pH of the vacuole and to a lesser extent the pH of the cytoplasm were affected at 10 minutes after elicitor addition; a decrease in pH from 5.3 to 4.8 was noted in the vacuole and from 7.46 to 7.28 in the cytoplasm. The ratio between the amount of Pi in the vacuole to that in the cytoplasm also changed within 10 minutes after elicitor addition. The signal for ATP (β-ATP) was low after elicitor addition and was high again 23 hours after elicitation. Forty-eight hours after elicitor addition, vacuolar and cytoplasmic pH had almost returned to their initial values. The rapid change in vacuolar and cytoplasmic pH may cause the change of metabolism that occurs in elicitor-treated P. vulgaris cells.  相似文献   

8.
Summary The induction of metabolic changes in suspension cultured cells of Catharanthus roseus upon elicitation has been investigated. Addition of a yeast glucan preparation to the growth medium resulted in induction of phenylalanine ammonia lyase. Phosphate uptake and metabolism of elicited cells was followed by 31P nuclear magnetic resonance. The uptake rate of Pi from the medium by oxygenated cells of C. roseus was reduced immediately after elicitation. Despite this reduced Pi uptake elicited cells had significantly increased amounts of ATP (twofold increase within 6 h). Cytoplasmic levels of Pi, phosphomonoesters, and Uridine Diphasphate glucose (UDP-Glc) were unaffected by eliciation. Furthermore, the cytoplasmic and vacuolar pH remained constant after addition of elicitor.  相似文献   

9.
Maize plants were grown in nutrient solution without phosphate,or in which inorganic phosphate (Pi) was maintained at nearlyconstant concentrations of 1 µM, 10µM or 0·5mM. In vivo 31P-NMR measurements showed that there was no discernibledifference in the cytoplasmic Pi content (µmol cm–3root volume) of the mature roots of plants exposed to 1 µM,10µM or 0·5 mM external phosphate for up to 12d. However, the vacuolar Pi content of the mature roots variedabout 10-fold between these three groups. The cytoplasmic Pi content of roots receiving no external phosphatedecreased significantly after about 7 d total growth, and atabout this time the vacuolar pool of Pi became too small foraccurate measurement. The presence of 1 µM Pi in the nutrientsolution completely prevented this decline in cytoplasmic Pi,and there was some evidence that it also raised the Pi contentof the root vacuoles above the almost undetectable level foundin the totally P-starved roots. During the first 7–9 d of growth, the nucleoside triphosphatecontent of the mature roots was unaffected by the concentrationof phosphate in the nutrient solution. The results highlight the close control of cytoplasmic concentrationsof certain important phosphorus metabolites in roots growingin soil of normal agricultural fertility. Key words: Vacuole, cytoplasm, intracellular compartmentation, NTP, P-nutrition  相似文献   

10.
Espen L  Dell'Orto M  De Nisi P  Zocchi G 《Planta》2000,210(6):985-992
The metabolic responses occurring in cucumber (Cucumis sativus L.) roots (a strategy-I plant) grown under iron-deficiency conditions were studied in-vivo using 31P-nuclear magnetic resonance spectroscopy. Iron starvation induced activation of metabolism leading to the consumption of stored carbohydrates to produce the NAD(P)H, ATP and phosphoenolpyruvate necessary to sustain the increased activity of the NAD(P)H:Fe3+-reductase, the H+-ATPase (EC 3.6.1.35) and phosphoenolpyruvate carboxylase (EC 4.1.1.31). Activation of catabolic pathways was supported by the enhancement of glycolytic enzymes and concentrations of the metabolites glucose-6-phosphate and fructose-6-phosphate, and by enhancement of the respiration rate. Moreover, Fe-deficiency induced a slight increase in the cytoplasmic (pHc) and vacuolar (pHv) pHs as well as a dramatic decrease in the vacuolar phosphate (Pi) concentration. A comparison was done using fusicoccin (FC), a fungal toxin which stimulates proton extrusion. Changes in pHc and pHv were measured after addition of FC. Under these conditions, a dramatic alkalinization of the pHv of −Fe roots was observed, as well as a concomitant Pi movement from the vacuole to the cytoplasm. These results showed that Fe starvation was indeed accompanied by the activation of metabolic processes useful for sustaining the typical responses occurring at the plasma-membrane level (i.e. increases in the NAD(P)H:Fe3+-reductase and H+-ATPase activities) as well as those involved in the homeostasis of pHc. The decrease in vacuolar Pi levels induced by Fe-deficiency and FC and movement of Pi from the vacuole to the cytoplasm suggest a possible involvement of this compound in the cellular pH-stat system. Received: 30 July 1999 / Accepted: 11 November 1999  相似文献   

11.
Previous work has shown that undissociated 2,4-dinitrophenol (DNP) both increases the permeability of roots to ions and alters the membrane lipids of barley roots. Anionic DNP is the main entrant form but has no effect on permeability or on the membrane lipids. The amount of anionic DNP taken up by the roots is sufficient, that were it in free solution in the cytoplasm, the DNP would uncouple oxidative phosphorylation, and thereby inhibit ATP synthesis. The present work was undertaken to assess whether DNP alters ATP levels when it is taken up by barley roots. 31P nuclear magnetic resonance spectra were used to monitor, in vivo, levels of ATP, cytoplasmic phosphate, vacuolar phosphate, and other phosphate compounds in barley roots in the presence of 10 micromolar DNP at pH 5 and pH 7. The spectra indicate that no change in the level of ATP or the cytoplasmic pH occurred in the roots in the presence of DNP for as long as 20 hours. Thus, the effects of undissociated DNP are effects directly on the root membranes and do not involve inhibition of ATP synthesis. Furthermore, the results explain why anionic DNP has no effect on ion uptake and accumulation.  相似文献   

12.
The uptake of [32P]phosphate by human, gel-filtered blood platelets and its incorporation into cytoplasmic ATP and polyphosphoinositides was studied. In unstimulated platelets, uptake was Na+o-dependent and saturable at approximately 20 nmol/min/10(11) cells with a half-maximal rate at 0.5 mM extracellular phosphate. Upon stimulation with thrombin or collagen, net influx of [32P]Pi was accelerated 5- to 10-fold. With thrombin, [32P]Pi efflux was also increased. After the first 2 min, efflux exceeded influx, resulting in the net release of [32P]Pi from the platelets. Since the stimulus-induced burst in [32P]Pi uptake paralleled the secretory responses, it might be an integral part of stimulus-response coupling in platelets. The stimulus-induced burst in net [32P]Pi uptake led to an enhanced labeling of metabolic ATP, which was already detectable at 5 s after stimulation with thrombin. Concomitantly, the incorporation of [32P]Pi into phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate was accelerated. The thrombin-induced increase in specific 32P radioactivity of cytoplasmic ATP fully accounted for the simultaneous increase in specific 32P radioactivity of these phosphoinositides. In studying the extent of 32P labeling of phosphorylated compounds in response to a cellular stimulus, it is therefore essential to measure the effect of the stimulus on the specific radioactivity of cytoplasmic ATP.  相似文献   

13.
Lin W 《Plant physiology》1979,63(5):952-955
Evidence is presented that K+ uptake in corn root segments is coupled to an electrogenic H+/K+ -exchanging plasmalemma ATPase while phosphate uptake is coupled to an OH/Pi antiporter. The plasmalemma ATPase inhibitor, diethylstilbestrol, or the stimulator, fusicoccin, altered K+ uptake directly and phosphate uptake indirectly. On the other hand, mersalyl, an OH/Pi antiporter inhibitor, inhibited phosphate uptake instantly but only slightly affected K+ uptake. Collapse of the proton gradient across the membrane by (p-trifluoromethoxy) carbonyl cyanide phenylhydrazone resulted in immediate inhibition of K+ uptake but only later inhibited phosphate uptake. Changing the pH of the absorption solution had opposite effects on K+ and phosphate uptake. In addition, a 4-hour washing of corn root tissue induced a 5-fold increase in the rate of K+ uptake with little or no lag, but only a 2- to 3-fold increase in phosphate uptake with a 30- to 45-minute lag. Collectively these differences strongly support the coupling of an electrogenic H+/K+ -exchanging ATPase to an OH/Pi antiporter in corn root tissue.  相似文献   

14.
32P was applied to a Laminaria digitata thallus and the pattern of 32P phosphorylated compounds was studied, as a function of time, in the different tissues involved in translocation, i.e. source, pathway and sinks. The results showed that, 3 hours after absorption by the uptake region (lamina), the bulk of the radioactivity was incorporated into organic compounds (70 to 80% of total 32P taken up), hexose monophosphates being the heaviest labelled. Further change in that region was marked by an accumulation of 32P in the inorganic pool (65 to 70% after 13 days). Conversely, the 32P pattern in the medulla of the stipe, which initially showed a similar pattern to the uptake region, did not vary during translocation. The pattern of 32P distribution into sinks (growing stipe peripheral tissue or hapteron) leads to accumulation of the radioactive element in inorganic and acid-insoluble fractions. These results are discussed in terms of comparative distribution of 32P in the different parts of the thallus and suggest that phosphate moves as Pi in that alga.Abbreviations TCA trichloroacetic acid - Po organic phosphate - Po sol acid-soluble organic phosphate fraction - Po insol acidinsoluble organic phosphate fraction - Pi morganic phosphate fraction - P lip lipidic phosphate - Np protein nitrogen - ATP adenosine triphosphate - ADP adenosine diphosphate - PEP phosphoenolpyruvic acid - PGA phosphoglyceric acid - G-1-P glucose-1-phosphate - G-6-P glucose-6-phosphate - UDPG uridine diphosphoglucose  相似文献   

15.
31P NMR spectroscopy was used to study in vivo the symbiotic state established between soybean (Glycine max [L.] Merr. cv Williams) and Bradyrhizobium japonicum (USDA 110 and 138). Different experimental conditions were used to maintain perfused, respiring detached or attached nodules in an NMR magnet. The pH of the perfusion medium affected the cytoplasmic pH and the resolution of the spectra. The internal Pi content and distribution were assessed as a function of nodule age and green-house growth conditions and the rate of glucose and 2-deoxyglucose uptake into nodules in split and intact states. The major metabolites (glucose-6-P, fructose-1,6-diP, P-choline, Pi, NTP, UDP-glc, and NAD) were readily identified from 31P NMR spectra of perchloric acid extracts of nodules with the exception of one unknown phosphorus metabolite. Nodules stressed by glucose deprivation demonstrated movement of Pi between the vacuole and cytoplasmic compartments not previously observed in 31P NMR studies.  相似文献   

16.
Xia JH  Saglio P 《Plant physiology》1990,93(2):453-459
The relationship between changes in H+ flux and sugar transport in maize Zea mays L. DEA root tips have been investigated using two methods for controlling the cellular nucleotide level: (a) incubation in the presence of a glucose analog, the 2-deoxyglucose, which decreased the ATP level to less than 15% of its initial value within 60 minutes without changing the ADP and AMP levels; (b) an hypoxic treatment which also decreased the ATP level but with a concomitant rise in ADP and AMP. In both cases the rate of hexose transport was not modified until ATP had dropped to 70% of its initial value; then it decreased with the cellular ATP level. The residual uptake rate at very low ATP concentrations still represented 50% of the maximum rate with the dGlc treatment but only the diffusion rate in anoxia. H+ efflux was abolished in anoxia but not by the 2-deoxyglucose treatment, in spite of a lower cellular ATP concentration. Our results are consistent with an inhibition of H+-ATPase activity in anoxia by the high levels of cellular ADP and AMP, and provide in vivo evidence that sugar uptake is dependent upon the proton motive force rather than cellular ATP concentration. The absence of stimulation of H+ extrusion by ferricyanide in either normoxic or hypoxic conditions suggests that a redox system does not appear to contribute to H+ secretion under the conditions of this investigation.  相似文献   

17.
Acidic inorganic phosphate (Pi) pool (pH around 6) was detected besides the cytoplasmic pool in intact cells of Chlorella vulgaris 11h by 31P-in vivo nuclear magnetic resonance (NMR) spectroscopy. It was characterized as acidic compartments (vacuoles) in combination with the cytochemical technique; staining the cells with neutral red and chloroquine which are known as basic reagents specifically accumulated in acidic compartments. Under various conditions, the results obtained with the cytochemical methods were well correlated with those obtained from in vivo NMR spectra; the vacuoles were well developed in the cells at the stationary growth phase where the acidic Pi signal was detected. In contrast, cells at the logarithmic phase in which no acidic Pi signal was detected contained only smaller vesicles that accumulated these basic reagents. No acidic compartment was detected by both cytochemical technique and 31P-NMR spectroscopy when the cells were treated with NH4OH. The vacuolar pH was lowered by the anaerobic treatment of the cells in the presence of glucose, while it was not affected by the external pH during the preincubation ranging from 3 to 10. Possible vacuolar functions in unicellular algae especially with respect to intracellular pH regulation are discussed.Non-standard abbreviations EDTA ethylenediaminetetraacetic acid - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - MDP methylene diphosphonic acid - NMR nuelear magnetic resonance - PCA perchloric acid - PCV packed cell volume - Pi inorganic phosphate - Pic sytoplasmic inorganic phosphate - Piv vacuolar inorganic phosphate - ppm parts per million - SP sugar phosphates - TCA trichloroacetic acid  相似文献   

18.
The pho2 mutant of Arabidopsis thaliana (L.) Heynh. accumulates excessive Pi (inorganic phosphate) concentrations in shoots compared to wild-type plants (E. Delhaize and P. Randall, 1995, Plant Physiol. 107: 207–213). In this study, a series of experiments was conducted to compare the uptake and translocation of Pi by pho2 with that of wild-type plants. The pho2 mutants had about a twofold greater Pi uptake rate than wild-type plants under P-sufficient conditions and a greater proportion of the Pi taken up accumulated in shoots of pho2. When shoots were removed, the uptake rate by roots was found to be similar for both genotypes, suggesting that the greater Pi uptake by the intact pho2 mutant is due to a greater shoot sink for Pi. Although pho2 mutants could recycle 32Pi from shoots to roots through phloem the proportion of 32Pi translocated to roots was less than half of that found in wild-type plants. When transferred from P-sufficient to P-deficient solutions, Pi concentrations in pho2 roots had a similar depletion rate to wild-type roots despite pho2 shoots having a fourfold greater Pi concentration than wild-type shoots throughout the experiment. We suggest that the pho2 phenotype could result from a partial defect in Pi transport in the phloem between shoots and roots or from an inability of shoot cells to regulate internal Pi concentrations. Received: 20 August 1997 / Accepted: 4 October 1997  相似文献   

19.
Pick U  Zeelon O  Weiss M 《Plant physiology》1991,97(3):1226-1233
Amines at alkaline pH induce in cells of the halotolerant alga Dunaliella a transient stress that is manifested by a drop in ATP and an increase of cytoplasmic pH. As much as 300 millimolar NH4+ are taken up by the cells at pH 9. The uptake is not associated with gross changes in volume and is accompanied by K+ efflux. Most of the amine is not metabolized, and can be released by external acidification. Recovery of the cells from the amine-induced stress occurs within 30 to 60 minutes and is accompanied by massive swelling of vacuoles and by release of the fluorescent dye atebrin from these vacuoles, suggesting that amines are compartmentalized into acidic vacuoles. The time course of ammonia uptake into Dunaliella cells is biphasic—a rapid influx, associated with cytoplasmic alkalinization, followed by a temperature-dependent slow uptake phase, which is correlated with recovery of cellular ATP and cytoplasmic pH. The dependence of amine uptake on external pH indicates that it diffuses into the cells in the free amine form. Studies with lysed cell preparations, in which vacuoles become exposed but retain their capacity to accumulate amines, indicate that the permeability of the vacuolar membrane to amines is much higher than that of the plasma membrane. The results can be retionalized by assuming that the initial amine accumulation, which leads to rapid vacuolar alkalinization, activates metabolic reactions that further increase the capacity of the vacuoles to sequester most of the amine from the cytoplasm. The results indicate that acidic vacuoles in Dunaliella serve as a high-capacity buffering system for amines, and as a safeguard against cytoplasmic alkalinization and uncoupling of photosynthesis.  相似文献   

20.
AtNPF7.3/AtNRT1.5, which is a nitrate transporter that drives root-to-shoot transport of NO3?, is also involved in modulating the response to K+ deprivation in Arabidopsis by affecting root development and K+ transport. However, whether NPF7.3/NRT1.5 functions in regulating plant responses to deficiencies of other nutrients remains unknown. In this study, we found that the expression of AtNPF7.3/AtNRT1.5 was predominant in the roots and was substantially induced by phosphate (Pi) starvation. The atnrt1.5 mutants displayed conspicuously longer primary roots along with a significantly reduced lateral root density under Pi-deficient conditions than did the wild-type plants, and these morphological differences in the roots were eliminated to a certain extent by the ethylene synthesis antagonist Co2+. Further analyses revealed that the expression of important Pi starvation-induced genes, which are directly involved in Pi transport, mobilization and distribution, were significantly higher in the atnrt1.5 mutants than that in the wild-type plants under Pi-starvation conditions; therefore, the atnrt1.5 mutants retained higher tissue Pi concentrations. Taken together, our results suggest that NPF7.3/NRT1.5 is an important component in the regulation of phosphate deficiency responses in Arabidopsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号