首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The present study was undertaken to investigate whether millimeter waves (MMWs) at 61.22 GHz can modulate the effect of cyclophosphamide (CPA), an anti-cancer drug, on the immune functions of mice. During the exposure each mouse's nose was placed in front of the center of the antenna aperture (1.5 x 1.5 cm) of MMW generator. The device produced 61.22 +/- 0.2 GHz wave radiation. Spatial peak Specific Absorption Rate (SAR) at the skin surface and spatial peak incident power density were measured as 885 +/- 100 W/kg and 31 +/- 5 mW/cm(2), respectively. Duration of the exposure was 30 min each day for 3 consecutive days. The maximum temperature elevation at the tip of the nose, measured at the end of 30 min, was 1 degrees C. CPA injection (100 mg/kg) was given intraperitoneally on the second day of exposure to MMWs. The animals were sacrificed 2, 5, and 7 days after CPA administration. MMW exposure caused upregulation in tumor necrosis factor-alpha (TNF-alpha) production in peritoneal macrophages suppressed by CPA administration. MMWs also caused a significant increase in interferon-gamma (IFN-gamma) production by splenocytes and enhanced proliferative activity of T-cells. Conversely, no changes were observed in interleukin-10 (IL-10) level and B-cell proliferation. These results suggest that MMWs accelerate the recovery process selectively through a T-cell-mediated immune response.  相似文献   

2.
In hair cells of the inner ear, phosphatidylserine (PS), detected with fluorescent annexin V labeling, was rapidly exposed on the external leaflet of apical plasma membranes upon dissection of the organ of Corti. PS externalization was unchanged by caspase inhibition, suggesting that externalization did not portend apoptosis or necrosis. Consistent with that conclusion, mitochondrial membrane potential and hair-cell nuclear structure remained normal during externalization. PS externalization was triggered by forskolin, which raises cAMP, and blocked by inhibitors of adenylyl cyclase. Blocking Na(+) influx by inhibiting the mechanoelectrical transduction channels and P2X ATP channels also inhibited external PS externalization. Diminished PS externalization was also seen in cells exposed to LY 294002, which blocks membrane recycling in hair cells by inhibiting phosphatidylinositol 3-kinase. These results indicate that PS exposure on the external leaflet, presumably requiring vesicular transport, results from elevation of intracellular cAMP, which can be triggered by Na(+) entry into hair cells.  相似文献   

3.
In hair cells of the inner ear, phosphatidylserine (PS), detected with fluorescent annexin V labeling, was rapidly exposed on the external leaflet of apical plasma membranes upon dissection of the organ of Corti. PS externalization was unchanged by caspase inhibition, suggesting that externalization did not portend apoptosis or necrosis. Consistent with that conclusion, mitochondrial membrane potential and hair-cell nuclear structure remained normal during externalization. PS externalization was triggered by forskolin, which raises cAMP, and blocked by inhibitors of adenylyl cyclase. Blocking Na+ influx by inhibiting the mechanoelectrical transduction channels and P2X ATP channels also inhibited external PS externalization. Diminished PS externalization was also seen in cells exposed to LY 294002, which blocks membrane recycling in hair cells by inhibiting phosphatidylinositol 3-kinase. These results indicate that PS exposure on the external leaflet, presumably requiring vesicular transport, results from elevation of intracellular cAMP, which can be triggered by Na+ entry into hair cells.  相似文献   

4.
The effect of 30.16 GHz millimeter wave (MMW) exposure at 1.0 and 3.5 mW/cm2 on gap junction intercellular communication (GJIC) was studied in cultured HaCaT keratinocytes, using the fluorescence recovery after photobleaching (FRAP) technique and laser confocal scanning microscopy to follow the intracellular movement of 5,6-carboxyfluorescein diacetate dye. While MMW exposure alone for 1 h at either 1.0 or 3.5 mW/cm2 did not affect GJIC, MMW exposure in combination with 5 ng/ml TPA treatment reversed TPA induced suppression of GJIC. Exposure at 1.0 mW/cm2 resulted in a partial reversal, and exposure at 3.5 mW/cm2 resulted in essentially full reversal of the TPA suppression.  相似文献   

5.
Abstract

P4-ATPases, a subfamily of P-type ATPases, translocate cell membrane phospholipids from the exoplasmic/luminal leaflet to the cytoplasmic leaflet to generate and maintain membrane lipid asymmetry. Exposure of phosphatidylserine (PS) in the exoplasmic leaflet is well known to transduce critical signals for apoptotic cell clearance and platelet coagulation. PS exposure is also involved in many other biological processes, including myoblast and osteoclast fusion, and the immune response. Moreover, mounting evidence suggest that PS exposure is critical for neuronal regeneration and degeneration. In apoptotic cells, PS exposure is induced by irreversible activation of scramblases and inactivation of P4-ATPases. However, how PS is reversibly exposed and restored in viable cells during other biological processes remains poorly understood. In the present review, we discuss the physiological significance of reversible PS exposure in living cells, and the putative roles of flippases, floppases, and scramblases.  相似文献   

6.
The exposure of phosphatidylserine (PS) on the cell surface is a general marker of apoptotic cells. Non-apoptotic PS externalization is induced by several activation stimuli, including engagement of immunoreceptors. Immune cells can also be activated by aggregation of glycosylphosphatidylinositol-anchored proteins (GPI-APs). However, it is unknown whether cell triggering through these proteins, lacking transmembrane and cytoplasmic domains, also leads to PS externalization. Here we show that engagement of GPI-APs in rodent mast cells induces a rapid and reversible externalization of PS by a non-apoptotic mechanism. PS externalization triggered by GPI-AP-specific monoclonal antibodies was dependent on the activity of H(+)-ATP synthase and several other enzymes involved in mast cell signaling but was independent of cell degranulation, free cytoplasmic calcium up-regulation, and a decrease in lipid packing as determined by merocyanine 540 binding. Surprisingly, disruption of actin cytoskeleton by latrunculin B or plasma membrane integrity by methyl-beta-cyclodextrin had opposite effects on PS externalization triggered through GPI-AP or the high affinity IgE receptor. We further show that PS externalization mediated by GPI-APs was also observed in some other cells, and its extent varied with antibodies used. Interestingly, effects of different antibodies on PS externalization were additive, indicating that independent stimuli converge onto a signaling pathways leading to PS externalization. Our findings identify the cell surface PS exposure induced through GPI-AP as a distinct mechanism of cell signaling. Such a mechanism could contribute to "inside-out" signaling in response to pathogens and other external activators and/or to initiation of other functions associated with PS externalization.  相似文献   

7.
8.
Effect of millimeter waves on natural killer cell activation   总被引:7,自引:0,他引:7  
Millimeter wave therapy (MMWT) is being widely used for the treatment of many diseases in Russia and other East European countries. MMWT has been reported to reduce the toxic effects of chemotherapy on the immune system. The present study was undertaken to investigate whether millimeter waves (MMWs) can modulate the effect of cyclophosphamide (CPA), an anticancer drug, on natural killer (NK) cell activity. NK cells play an important role in the antitumor response. MMWs were produced with a Russian-made YAV-1 generator. The device produced modulated 42.2 +/- 0.2 GHz radiation through a 10 x 20 mm rectangular output horn. Mice, restrained in plastic tubes, were irradiated on the nasal area. Peak SAR at the skin surface and peak incident power density were measured as 622 +/- 100 W/kg and 31 +/- 5 mW/cm2, respectively. The maximum temperature elevation, measured at the end of 30 min, was 1 degrees C. The animals, restrained in plastic tubes, were irradiated on the nasal area. CPA injection (100 mg/kg) was given intraperitoneally on the second day of 3-days exposure to MMWs. All the irradiation procedures were performed in a blinded manner. NK cell activation and cytotoxicity were measured after 2, 5, and 7 days following CPA injection. Flow cytometry of NK cells showed that CPA treatment caused a marked enhancement in NK cell activation. The level of CD69 expression, which represents a functional triggering molecule on activated NK cells, was increased in the CPA group at all the time points tested as compared to untreated mice. However, the most enhancement in CD69 expression was observed on day 7. A significant increase in TNF-alpha level was also observed on day 7 following CPA administration. On the other hand, CPA caused a suppression of the cytolytic activity of NK cells. MMW irradiation of the CPA treated groups resulted in further enhancement of CD69 expression on NK cells, as well as in production of TNF-alpha. Furthermore, MMW irradiation restored CPA induced suppression of the cytolytic activity of NK cells. Our results show that MMW irradiation at 42.2 GHz can up-regulate NK cell functions.  相似文献   

9.
Phosphatidylserine (PS) exposure on the surface of cells has been considered a characteristic feature of apoptosis. However, we demonstrate herein that externalization of PS occurs in a cell-type-specific, albeit caspase-dependent, manner. Moreover, we could find no correlation in six different cell lines between the level of expression of the phospholipid (PL) scramblase and the capacity of these cells to externalize PS during apoptosis. Overexpression of PL scramblase in Raji cells, which exhibit low constitutive expression of this enzyme, by retroviral transduction of PL scramblase or treatment of the cells with interferon-alpha, failed to confer the capacity to expose PS in response to apoptotic stimuli. However, the lack of PS exposure in some cell types was not due to their inability to translocate PS molecules to the cell surface, since incubation with thiol reactive agents, such as N-ethylmaleimide, disulfiram and diamide, yielded rapid and pronounced PS exposure in all cell lines. These data suggest that plasma membrane PS exposure is not an obligatory component of the apoptotic phenotype, and that PL scramblase is not the sole determinant of PS externalization in apoptotic cells when this occurs.  相似文献   

10.
目的:探讨磷脂酰丝氨酸(PS)暴露在急性早幼粒细胞白血病(APL)细胞促凝血活性中的作用及不同药物对其产生的影响。方法:实验共分为4组:新采集APL细胞组、APL细胞单纯培养组、APL细胞全反式维甲酸(ATRA)处理组及APL细胞依托泊苷(VP16)处理组。提取10名初发APL患者的骨髓APL细胞进行实验,提取10名健康成人外周血单个核细胞作为凝血实验的正常对照。分别用1μmol·L-1ATRA和1μmol·L-1VP16处理APL细胞24 h,利用共聚焦显微镜及流式细胞术检测各组细胞PS暴露情况。利用凝血实验检测各组细胞总的促凝活性及细胞表面磷脂的促凝血活性。利用PS特异结合蛋白乳粘素对各组细胞进行凝血抑制实验。结果:新采集的APL细胞存在一定量的PS外翻,并且与外周血单个核细胞相比,存在更高的促凝血活性(P〈0.05),ATRA对APL细胞的PS外翻及促凝活性有抑制作用(P〈0.05),VP16则对其有显著的促进作用(P〈0.001)。乳粘素可以拮抗APL细胞至少70%的促FXa和FIIa生成活性。结论:PS暴露在APL细胞促凝血过程中发挥着重要作用。分化治疗药物ATRA和化疗药物VP16分别通过减少和增加APL细胞表面PS的暴露来减轻和加重凝血紊乱。乳粘素通过与PS特异结合可以有效地阻断暴露的PS的促凝活性,是一种潜在的治疗APL凝血紊乱的抗凝剂。  相似文献   

11.
The mechanisms contributing to an increased risk of thrombosis in uremia are complex and require clarification. There is scant morphological evidence of membrane-dependent binding of factor Xa (FXa) and factor Va (FVa) on endothelial cells (EC) in vitro. Our objectives were to confirm that exposed phosphatidylserine (PS) on microparticle (MP), EC, and peripheral blood cell (PBC) has a prothrombotic role in uremic patients and to provide visible and morphological evidence of PS-dependent prothrombinase assembly in vitro. We found that uremic patients had more circulating MP (derived from PBC and EC) than controls. Additionally, patients had more exposed PS on their MPs and PBCs, especially in the hemodialysis group. In vitro, EC exposed more PS in uremic toxins or serum. Moreover, reconstitution experiments showed that at the early stages, PS exposure was partially reversible. Using confocal microscopy, we observed that PS-rich membranes of EC and MP provided binding sites for FVa and FXa. Further, exposure of PS in uremia resulted in increased generation of FXa, thrombin, and fibrin and significantly shortened coagulation time. Lactadherin, a protein that blocks PS, reduced 80% of procoagulant activity on PBC, EC, and MP. Our results suggest that PBC and EC in uremic milieu are easily injured or activated, which exposes PS and causes a release of MP, providing abundant procoagulant membrane surfaces and thus facilitating thrombus formation. Blocking PS binding sites could become a new therapeutic target for preventing thrombosis.  相似文献   

12.
Abstract: Earlier reports on nonneural cells have shown that the normally inner plasma membrane lipid, phosphatidylserine (PS), flip-flops out during the early stages of apoptosis, whereas DNA laddering and plasma membrane permeabilization occur during the late stages. In this study, the applicability of these parameters to CNS-derived neuronal cells was tested using hippocampal HN2-5, cells that undergo apoptosis under anoxia. Because such insults on unsynchronized cells, e.g., undifferentiated HN2-5 cells, result in both early and late apoptotic cells, we mechanically separated these cells into three fractions containing (a) cells that had completely detached during anoxia, (b) cells that remained weakly attached to the tissue culture dish and, once detached by trituration in serum-containing medium, did not reattach, and (c) cells that reattached in 2–3 h. Fractions a and b contained cells that showed pronounced DNA laddering, whereas cells in fraction c did not show any DNA laddering. Double staining with fluorescein isothiocyanate-annexin V (which binds to PS) and propidium iodide (which stains the DNA in cells with a permeable cell membrane) revealed that all cells in fraction a had a permeable cell membrane (propidium iodide-positive) and PS molecules in the outer leaflet of the plasma membrane (fluorescein isothiocyanate-annexin V-positive). By contrast, fractions b and c contained cells with no externalized PS molecules. Cells in fractions a–c also showed, respectively, 50-, 21-, and 5.5-fold higher caspase-3 (CPP32) activity than that in healthy control cells. All these results show that fraction a contained late apoptotic cells, which also had the highest CPP32 activity; cells in fraction b were at an intermediate stage, when DNA laddering had already occurred; and fraction c contained very early apoptotic cells, in which no DNA laddering had yet occurred. Therefore, in the neuronal HN2-5 cells, externalization of PS occurs only during the final stages of apoptosis when the cells have completely lost their adhesion properties. Further experiments showed that ameboid microglial cells isolated from neonatal mouse brain phagocytosed only the cells in fraction a. These results show that in CNS-derived HN2-5 cells, (a) PS externalization is a late apoptotic event and is concomitant with a complete loss of surface adhesion of the apoptotic cells and (b) PS externalization is crucial for microglial recognition and phagocytosis of the apoptotic HN2-5 cells. Thus, PS externalization could be causally linked to the final detachment of apoptotic neuronal cells, which in turn prepares them for rapid phagocytosis by microglia.  相似文献   

13.
低温诱导淡水白鲳尾鳍细胞系早期凋亡   总被引:1,自引:0,他引:1  
CBT cell line developed from a warm-water fish Colossoma Brachypomum,was used to evaluate the effects of cold stress on fish cells. Cell viability was measured by Thiazolyl blue (MTT) method and cellular ultrastructure was examined under transmission electron microscope. Externalization of phosphatidylserine(PS) and mitochondrial membrane potential(MMP) were monitored with confocal laser scanning microscope. Results showed that cell viability and MMP decreased in a time-dependent manner, and the early events of apoptosis such as chromatin condensation, margination and PS externalization occurred, when the cells were exposed to 10 degrees C. It suggested that low temperature (10 degrees C) could induce apoptosis in Colossoma Brachypomum CBT cells.  相似文献   

14.
The objective of the present studies was to investigate whether millimeter wave (MMW) therapy can increase the efficacy of cyclophosphamide (CPA), a commonly used anti-cancer drug. The effect of combined MMW-CPA treatment on melanoma growth was compared to CPA treatment alone in a murine model. MMWs were produced with a Russian made YAV-1 generator. The device produced 42.2 +/- 0.2 GHz modulated wave radiation through a 10 x 20 mm rectangular output horn. The animals, SKH-1 hairless female mice, were irradiated on the nasal area. Peak SAR and incident power density were measured as 730 +/- 100 W/kg and 36.5 +/- 5 mW/cm2, respectively. The maximum skin surface temperature elevation measured at the end of 30 min irradiation was 1.5 degrees C. B16F10 melanoma cells (0.2 x 10(6)) were implanted subcutaneously into the left flank of mice on day 1 of the experiment. On days 4-8, CPA was administered intraperitoneally (30 mg/kg/day). MMW irradiation was applied concurrently with, prior to or following CPA administration. A significant reduction (P < .05) in tumor growth was observed with CPA treatment, but MMW irradiation did not provide additional therapeutic benefit as compared to CPA alone. Similar results were obtained when MMW irradiation was applied both prior to and following CPA treatment.  相似文献   

15.
Quan GB  Liu MX  Ren SP  Zhang JG  Han Y 《Cryobiology》2006,53(1):107-118
The plasma membrane of red blood cells permits sugars to be loaded into the cytoplasm simply by incubation in a suitable buffer solution containing the sugar. This may provide some hope for the freeze-drying of human red blood cells. However, the effect of the loading process on red blood cells has not been fully investigated. The exposure of phosphatidylserine (PS) on the surface of the cell can be recognized by macrophages and result in shortened circulation in vivo. This study evaluates the effects of the concentration, the incubation time, and the temperature of exposure of human red blood cells to extracellular trehalose or glucose. Exposure of PS was demonstrated by annexin V labeling. It was shown that the efficiency of loading of glucose was significantly greater than that of trehalose. The loading efficiency of both sugars increased with increase in extracellular sugar concentration, prolongation of incubation time, and increase of incubation temperature. The percentages of cells with exposed PS and of damaged cells were dependent on the extracellular sugar concentration, the incubation time, and the temperature. With an extracellular glucose concentration of 0.8M, the percentage of cells with exposed PS was more than 80% and significantly higher than that of red blood cells loaded with trehalose (approximate 20%, P<0.01). As the incubation time was prolonged, the percentage of PS exposure and of damaged cells also increased. After incubation for 5h, the percentage of red cells with exposed PS following loading with glucose was more than 80% and significantly higher than that of cells loaded with trehalose (40%, P<0.01). In addition, the incubation temperature had a major effect on PS exposure. The percentage of cells with PS exposure and the proportion of damaged cells increased with increase of incubation temperature. At 37 degrees C, the percentage of cells with exposed PS and of damaged cells after loading with glucose was more than 80% and significantly higher than that of cells loaded with trehalose (P<0.01). However, when the temperature was below 25 degrees C, the percentage of cells with exposed PS and of damaged cells after loading with glucose or trehalose were both less than 10%. In conclusion, the loading efficiency for glucose was higher than that for trehalose, but the lesser effect of trehalose on exposure of PS suggests that it can maintain the asymmetrical distribution of membrane phospholipids and the intracellular trehalose can increase the osmotic tolerance of cells.  相似文献   

16.
Macrophage recognition of apoptotic cells depends on externalization of phosphatidylserine (PS), which is normally maintained within the cytosolic leaflet of the plasma membrane by aminophospholipid translocase (APLT). APLT is sensitive to redox modifications of its -SH groups. Because activated macrophages produce reactive oxygen and nitrogen species, we hypothesized that macrophages can directly participate in apoptotic cell clearance by S-nitrosylation/oxidation and inhibition of APLT causing PS externalization. Here we report that exposure of target HL-60 cells to nitrosative stress inhibited APLT, induced PS externalization, and enhanced recognition and elimination of "nitrosatively" modified cells by RAW 264.7 macrophages. Using S-nitroso-L-cysteine-ethyl ester (SNCEE) and S-nitrosoglutathione (GSNO) that cause intracellular and extracellular trans-nitrosylation of proteins, respectively, we found that SNCEE (but not GSNO) caused significant S-nitrosylation/oxidation of thiols in HL-60 cells. SNCEE also strongly inhibited APLT, activated scramblase, and caused PS externalization. However, SNCEE did not induce caspase activation or nuclear condensation/fragmentation suggesting that PS externalization was dissociated from the common apoptotic pathway. Dithiothreitol reversed SNCEE-induced S-nitrosylation, APLT inhibition, and PS externalization. SNCEE but not GSNO stimulated phagocytosis of HL-60 cells. Moreover, phagocytosis of target cells by lipopolysaccharide-stimulated macrophages was significantly suppressed by an NO. scavenger, DAF-2. Thus, macrophage-induced nitrosylation/oxidation plays an important role in cell clearance, and hence in the resolution of inflammation.  相似文献   

17.
High-amplitude, MV/m, nanosecond pulsed electric fields (nsPEF) have been hypothesized to cause nanoporation of the plasma membrane. Phosphatidylserine (PS) externalization has been observed on the outer leaflet of the membrane shortly after nsPEF exposure, suggesting local structural changes in the membrane. In this study, we utilized fluorescently-tagged Annexin V to observe the externalization of PS on the plasma membrane of isolated Chinese Hamster Ovary (CHO) cells following exposure to nsPEF. A series of experiments were performed to determine the dosimetric trends of PS expression caused by nsPEF as a function of pulse duration, τ, delivered field strength, ED, and pulse number, n. To accurately estimate dose thresholds for cellular response, data were reduced to a set of binary responses and ED50s were estimated using Probit analysis. Probit analysis results revealed that PS externalization followed the non-linear trend of (τ*ED 2)−1 for high amplitudes, but failed to predict low amplitude responses. A second set of experiments was performed to determine the nsPEF parameters necessary to cause observable calcium uptake, using cells preloaded with calcium green (CaGr), and membrane permeability, using FM1-43 dye. Calcium influx and FM1-43 uptake were found to always be observed at lower nsPEF exposure parameters compared to PS externalization. These findings suggest that multiple, higher amplitude and longer pulse exposures may generate pores of larger diameter enabling lateral diffusion of PS; whereas, smaller pores induced by fewer, lower amplitude and short pulse width exposures may only allow extracellular calcium and FM1-43 uptake.  相似文献   

18.
Apoptotic cell death is characterized by the early exposure of phosphatidylserine (PS) at the outer surface of the plasma membrane. The aim of the present study was to examine whether PS exposure also occurs during oncosis (early primary necrosis) and to localize PS at the subcellular level, applying a pre-embedding immunogold labeling technique with biotin conjugated annexin V. The issue was addressed by using caspase-8 deficient, Bcl-2 overexpressing JB6 cells, which die by oncosis when stimulated with synthetic dsRNA. We observed by fluorescence microscopy that oncotic cells with preserved plasma membrane integrity showed PS exposure (annexin+/propidium iodide-). The data was confirmed on the ultrastructural level and PS was localized in oncosis at the outer leaflet of the continuous plasma membrane with preserved trilamellar structure. In postoncotic necrotic cells the immunogold labels were found on the plasma membrane and on the intracellular membranes of the cells, which underwent plasma membrane disruption. In conclusion, this study reveals that PS externalization occurs not only in apoptosis but also in oncosis at least in our cell model system.  相似文献   

19.
Selective oxidation of phosphatidylserine (PS) during apoptosis precedes its externalization in plasma membrane and is essential for the engulfment of apoptotic cells. To experimentally test whether PS oxidation stimulates its externalization via its effects on aminophospholipid translocase (APT) or by enhanced PS scrambling, action of oxidized PS (PSox) was studied using leukemia HL-60 cells and lymphoma Raji cells. Both PS and PSox were equally well recognized by APT. PSox did not inhibit APT. Rate of transmembrane PS diffusion was fourfold higher in cells with integrated PSox than with PS. Thus, PSox acts as a "non-enzymatic scramblase" likely contributing to PS externalization.  相似文献   

20.
Interactions between millimeter waves (MMWs) and biological systems have received increasing attention due to the growing use of MMW radiation in technologies ranging from experimental medical devices to telecommunications and airport security. Studies have shown that MMW exposure alters cellular function, especially in neurons and muscles. However, the biophysical mechanisms underlying such effects are still poorly understood. Due to the high aqueous absorbance of MMW, thermal mechanisms are likely. However, nonthermal mechanisms based on resonance effects have also been postulated. We studied MMW stimulation in a simplified preparation comprising Xenopus laevis oocytes expressing proteins that underlie membrane excitability. Using electrophysiological recordings simultaneously with 60 GHz stimulation, we observed changes in the kinetics and activity levels of voltage-gated potassium and sodium channels and a sodium-potassium pump that are consistent with a thermal mechanism. Furthermore, we showed that MMW stimulation significantly increased the action potential firing rate in oocytes coexpressing voltage-gated sodium and potassium channels, as predicted by thermal terms in the Hodgkin-Huxley model of neurons. Our results suggest that MMW stimulation produces significant thermally mediated effects on excitable cells via basic thermodynamic mechanisms that must be taken into account in the study and use of MMW radiation in biological systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号