首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lobova  T. I.  Listova  L. V.  Popova  L. Yu. 《Microbiology》2004,73(1):89-93
A study of the horizontal and vertical distribution of heterotrophic bacteria in brackish Lake Shira in summer periods showed that mesophilic bacteria dominated in all areas of the lake, whereas psychrotolerant bacteria dominated in the metalimnion and hypolimnion of its central part. Nonhalophilic bacteria were mostly mesophilic and dominated in coastal waters. Most psychrotolerant bacteria were able to grow in the presence of 5–10% NaCl. Heterotrophic bacteria isolated in different regions of the lake were identified to a generic level. The isolates were classified into autochthonous and allochthonous microorganisms on the bases of their distribution pattern in the lake water, halotolerance, and ability to grow at low temperatures.  相似文献   

2.
Sequences of the 16S ribosomal DNA (rDNA) from psychrotolerant and mesophilic strains of the Bacillus cereus group revealed signatures which were specific for these two thermal groups of bacteria. Further analysis of the genomic DNA from a wide range of food and soil isolates showed that B. cereus group strains have between 6 and 10 copies of 16S rDNA. Moreover, a number of these environmental strains have both rDNA operons with psychrotolerant signatures and rDNA operons with mesophilic signatures. The ability of these isolates to grow at low temperatures correlates with the prevalence of rDNA operons with psychrotolerant signatures, indicating specific nucleotides within the 16S rRNA to play a role in psychrotolerance.  相似文献   

3.
Bacillus weihenstephanensis strains are psychrotolerant and grow from below 7°C to 38°C. Closely related mesophilic Bacillus cereus strains can grow from above 7°C to 46°C. We classified 1060 B. cereus group isolates from different soil samples with respect to their psychrotolerant and mesophilic genotypes by polymerase chain reaction (PCR) targeting of specific 16S rDNA and cold shock protein A gene signatures. In parallel, growth tests at 7°C were carried out to determine the thermal phenotype. The geographic distribution of psychrotolerant and mesophilic isolates was found to depend significantly on the prevalent annual average temperature. In one tropical, one temperate and two alpine habitats, the proportion of psychrotolerant cspA genotypes was found to be 0%, 45% and 86% and 98%, respectively, with the corresponding annual average temperatures being 28°C, 7°C, 4°C and 1°C. In the tropical habitat, only the mesophilic B. cereus was found, characterized by correspondence of thermal genotype and phenotype. In the alpine habitat, almost only the psychrotolerant B. weihenstephanensis was isolated. In the temperate habitat, mesophilic B. cereus and psychrotolerant B. weihenstephanensis as well as 'intermediate thermal types' occurred, the latter having opposite thermal genotypes and phenotypes or opposing sets of thermal DNA signatures, characterized by the coexistence of mesophilic and psychrotolerant 16S rDNA operon copies within a single isolate. Both sugar utilization and DNA fingerprinting patterns revealed a high, probably non-clonal microsite diversity within the population of the temperate habitat. We interpret our observations in terms of a temperature-dependent selection regime, acting on recombining B. cereus / B. weihenstephanensis populations in soil.  相似文献   

4.
From 1996 to 1999 heterotrophic bacteria of the brackish-water Lake Shira (Republic of Khakasia, Russia) were studied to understand the seasonal dynamics of their antibiotic resistance. During the winter, these bacteria were represented primarily by forms that could not be cultured and were psychrotolerant. In the summer period, heterotrophic, mesophilic bacteria increased in number. The percentages of isolates with multiple, antibiotic resistance isolated from the lake region near the resort area of the lake were 2–3 times higher than those from the central part of the lake. A decline in the bacterial numbers with multiple antibiotic resistance was observed during the cold period (February–March). Various mechanisms of multiple, antibiotic resistance of heterotrophic bacteria isolated from Shira lake are discussed.  相似文献   

5.
The optimal growth of mesophilic methanotrophic bacteria (collection strains of the genera Methylocystis, Methylomonas, Methylosinus, and Methylobacter) occurred within temperature ranges of 31-34 degrees C and 23-25 degrees C. None of the strains studied were able to grow at 1.5 or 4 degrees C. Representatives of six methanotrophic species (strains Mcs. echinoides 2, Mm. methanica 12, Mb. bovis 89, Mcs. pyriformis 14, Mb. chroococcum 90, and Mb. vinelandii 87) could grow at 10 degrees C (with a low specific growth rate). The results obtained suggest that some mesophilic methane-oxidizing bacteria display psychrotolerant (psychrotrophic) but not psychrophilic properties. In general, the Rosso model, which describes bacterial growth rate as a function of temperature, fits well the experimental data, although, for most methanotrophs, with symmetrical approximations for optimal temperature.  相似文献   

6.
Novel strains of obligately chemolithoautotrophic, sulfur-oxidizing bacteria have been isolated from various depths of Lake Fryxell, Antarctica. Physiological, morphological, and phylogenetic analyses showed these strains to be related to mesophilic Thiobacillus species, such as T. thioparus. However, the psychrotolerant Antarctic isolates showed an adaptation to cold temperatures and thus should be active in the nearly freezing waters of the lake. Enumeration by most-probable-number analysis in an oxic, thiosulfate-containing medium revealed that the sulfur-oxidizing chemolithotroph population peaks precisely at the oxycline (9.5 m), although viable cells exist well into the anoxic, sulfidic waters of the lake. The sulfur-oxidizing bacteria described here likely play a key role in the biogeochemical cycling of carbon and sulfur in Lake Fryxell.  相似文献   

7.
It has been demonstrated that complexes of mycelial bacteria (actinomycetes), in which the amount of psychrotolerant actinomycetes reaches hundreds of thousands of CFU/g of the soil (frequently exceeding the portion of mesophilic forms), are developed in peat and podzolic soils of the tundra and taiga at low temperatures. As actinomycetes grow and develop in cold soils, their mycelium increases in length. Use of the molecular in situ hybridization method (fluorescent in situ hybridization, FISH) demonstrated that the portion of metabolically active mycelial actinobacteria exceeds the portion of unicellular actinobacteria in the Actinobacteria phylum. Specific peculiarities of psychrotolerant populations in relation to the spectrum of consumed substrates (histidine, mannitol, saccharose) were established by the method of multirespirometric testing.  相似文献   

8.
Novel strains of obligately chemolithoautotrophic, sulfur-oxidizing bacteria have been isolated from various depths of Lake Fryxell, Antarctica. Physiological, morphological, and phylogenetic analyses showed these strains to be related to mesophilic Thiobacillus species, such as T. thioparus. However, the psychrotolerant Antarctic isolates showed an adaptation to cold temperatures and thus should be active in the nearly freezing waters of the lake. Enumeration by most-probable-number analysis in an oxic, thiosulfate-containing medium revealed that the sulfur-oxidizing chemolithotroph population peaks precisely at the oxycline (9.5 m), although viable cells exist well into the anoxic, sulfidic waters of the lake. The sulfur-oxidizing bacteria described here likely play a key role in the biogeochemical cycling of carbon and sulfur in Lake Fryxell.  相似文献   

9.
The mesophilic and psychrotolerant microbiota of the air, soil, water, and bottom sediments of the Kinderlinskaya cave (South Urals, Russia) and the factors affecting the structure of microbial communities were investigated. The pattern of microbial distribution in soils was shown to depend on both the configuration of the cave and the level of recreational load. The lowest numbers of bacteria and micromycetes were found in the poorly visited, difficult-to-access sites. Coliform bacteria were revealed in all soil and sediment samples and in some water samples. Micromycetes belonged to 19 genera, with Geomyces pannorum as the dominant species. Air movement was shown to be the main factor affecting the density of the aerial microbiota.  相似文献   

10.
The optimal growth of mesophilic methanotrophic bacteria (collection strains of the genera Methylocystis, Methylomonas, Methylosinus, and Methylobacter) occurred within temperature ranges of 31–34°C and 23–25°C. None of the 12 strains studied were able to grow at 1.5 or 4°C. Representatives of six methanotrophic species (strains Mcs. echinoides2, Mm. methanica12, Mb. bovis89, Mcs. pyriformis14, Mb. chroococcum90, and Mb. vinelandii87) could grow at 10°C (with a low specific growth rate). The results obtained suggest that some mesophilic methane-oxidizing bacteria display psychrotolerant (psychrotrophic) but not psychrophilic properties. In general, the Rosso model, which describes bacterial growth rate as a function of temperature, fits the experimental data well, although, for most methanotrophs, with symmetrical approximations for the optimal temperature.  相似文献   

11.
The distribution and species diversity of aerobic organotrophic bacteria in the Dagan high-temperature oil field (China), which is exploited via flooding, have been studied. Twenty-two strains of the most characteristic thermophilic and mesophilic aerobic organotrophic bacteria have been isolated from the oil stratum. It has been found that, in a laboratory, the mesophilic and thermophilic isolates grow in the temperature, pH, and salinity ranges characteristic of the injection well near-bottom zones or of the oil stratum, respectively, and assimilate a wide range of hydrocarbons, fatty acids, lower alcohols, and crude oil, thus exhibiting adaptation to the environment. Using comparative phylogenetic 16S rRNA analysis, the taxonomic affiliation of the isolates has been established. The aerobic microbial community includes gram-positive bacteria with a high and low G+C content of DNA, and gamma and beta subclasses of Proteobacteria. The thermophilic bacteria belong to the genera Geobacillus and Thermoactinomyces, and the mesophilic strains belong to the genera Bacillus, Micrococcus, Cellulomonas, Pseudomonas, and Acinetobacter. The microbial community of the oil stratum is dominated by known species of the genus Geobacillus (G. subterraneus, G. stearothermophilus, and G. thermoglucosidasius) and a novel species "Geobacillus jurassicus." A number of novel thermophilic oil-oxidizing bacilli have been isolated.  相似文献   

12.
Numerical taxonomic analysis of a freshwater bacterial guild demonstrated that the bacteria capable of growth on phenanthrene and polychlorinated biphenyl media were representative of the taxa obtained from low nutrient oligotrophic media. The diversity of heterotrophic bacteria and members of new taxa recovered from the guild followed a poisson distribution relative to the number of isolation media used. Moderately high nutrient, yeast extract peptone and glucose agar was found to be the most selective isolation medium relative to the total number of taxa recovered whereas low nutrient, lake water agar was the least selective medium used. Carbon source utilization patterns of the isolated taxa indicated that taxa within the guild had broad niche ranges and could potentially occupy many niches within a dynamic environment. The structure of the bacterial guild was dominated by mesophilic oligotrophs. The results of this investigation demonstrate that potential biodegradative populations are representative of the diverse taxa found in uncontaminated freshwater environments.  相似文献   

13.
The major part (94%) of the Bacillus cereus-like isolates from a Danish sandy loam are psychrotolerant Bacillus weihenstephanensis according to their ability to grow at temperatures below 7 °C and/or two PCR-based methods, while the remaining 6% are B. cereus. The Bacillus mycoides-like isolates could also be␣divided into psychrotolerant and mesophilic isolates. The psychrotolerant isolates of B. mycoides could␣be discriminated from the mesophilic by the two PCR-based methods used to characterize B.␣weihenstephanensis. It is likely that the mesophilic B. mycoides strains are synonymous with Bacillus pseudomycoides, while psychrotolerant B. weihenstephanensis, like B. mycoides, are B. mycoides senso stricto. B. cereus is known to produce a number of factors, which are involved in its ability to cause gastrointestinal and somatic diseases. All the B. cereus-like and B. mycoides like isolates from the sandy loam were investigated by PCR for the presence of 12 genes encoding toxins. Genes for the enterotoxins (hemolysin BL and nonhemolytic enterotoxin) and the two of the enzymes (cereolysin AB) were present in the major part of the isolates, while genes for phospolipase C and hemolysin III were present in fewer isolates, especially among B. mycoides like isolates. Genes for cytotoxin K and the hemolysin II were only present in isolates affiliated to B. cereus. Most of the mesophilic B. mycoides isolates did not possess the genes for the nonhemolytic enterotoxin and the cereolysin AB. The presence of multiple genes coding for virulence factors in all the isolates from the B. cereus group suggests that all the isolates from the sandy loam are potential pathogens.  相似文献   

14.
Twenty-six strains of Bacillus cereus from different sources were determined to be either mesophilic or psychrotrophic by growth at 6 and 42 degrees C. The strains were also screened by two polymerase chain reaction (PCR) methods designed to discriminate between mesophilic and psychrotrophic types. Seventeen of the 26 strains were able to grow at 6 degrees C, but only four conformed to the new psychrotolerant species Bacillus weihenstephanensis. Among the 26 strains were two which caused outbreaks of food poisoning in Norway, and three others that were isolated from food suspected of causing illness. The presence of the gene components encoding production of enterotoxins Nhe, Hbl, EntT and a recently described cytotoxin K was determined by PCR. All the strains possessed genes for at least one of these toxins, and 19 of the 26 strains were cytotoxic in a Vero cell assay. We conclude that there are psychrotrophic B. cereus strains which cannot be classified as B. weihenstephanensis, and that intermediate forms between the two species exist. No correlation between cytotoxicity and the growth temperature of the strains was found.  相似文献   

15.
The formation of methane in various ecosystems is due to the functioning of an anaerobic community, which combines trophically different groups of microorganisms. The methanogenic microbial community is a complex biological system, which responds to low temperatures by changes in its trophic structure resulting in redistributing matter flows. The enhanced activity of homoacetogenic bacteria at low temperature plays a significant role in this redistribution. Due to their relatively high growth rates and metabolic versatility, homoacetogens can successfully compete with fermenting bacteria and hydrogenotrophic methanogenic archaea for common substrates. The concentration of hydrogen is an important regulatory factor in the psychroactive methanogenic community. At low temperature methanogenic archaea possessing a higher affinity for hydrogen than homoacetogens provide for interspecies H2 transport in syntrophic reactions of fatty acid decomposition. The formation of a balanced community at low temperature is a longtime process. Cold terrestrial ecosystems are dominated by psychroactive (psychrotolerant) microorganisms, which can grow over a wide range of ambient temperatures.  相似文献   

16.
Chemical and biological components of the Selenga River waters, the largest tributary of Lake Baikal, differ significantly from the lake waters. Active transformation processes of river waters into the lake ones occur in the vast barrier-like zone in the river-sea boundary areas. This study presents results on the spatial distribution and dynamics of water chemistry as well as the quantity and diversity of phyto- and bacterioplankton at a distance of 14 km off the Selenga River mouth. The most representative tracers of river and lake waters are total amount of ions and sulphates. Principal changes of chemical and biological parameters were fixed at 1–3 km off the Selenga River mouth that was determined as a mixing zone. Intense development of phytoplankton and eukaryotic picoplankton causing the decrease of nitrate and phosphate concentrations and organic matter rise were registered in this area. Gradual replacement of river phytoplankton by the lake one, abundance reduction of microorganisms and organotrophic bacteria and percentage increase of oligotrophic and psychrotolerant bacteria occurred in the mixing zone. Replacement of PC-rich picocyanobacteria by PE-rich ones was also recorded here. At a distance of 5–7 km off the shore, nutrient concentration and plankton composition were similar to those of Lake Baikal.  相似文献   

17.
The major carotenoid pigments of an Antarctic psychrotolerant bacterium, Sphingobacterium antarcticus, and a mesophilic bacterium, Sphingobacterium multivorum, were identified as zeaxanthin, beta-cryptoxanthin, and beta-carotene. Analysis was based on ultraviolet-visible spectroscopy, mass spectroscopy, and reversed-phase HPLC. Photoacoustic spectroscopy of intact bacterial cells revealed that the bulk of the pigments in S. antarcticus and S. multivorum was associated with the cell membrane. In vitro studies with synthetic membranes of phosphatidylcholine demonstrated that the major pigment was bound to the membranes and decreased their fluidity. The relative amounts of polar pigments were higher in cells grown at 5 degrees C than in cells grown at 25 degrees C. In the mesophilic strain, the synthesis of polar carotenoids was quantitatively less than that of the psychrotolerant strain.  相似文献   

18.
Five strains of methanogenic archaea (MT, MS, MM, MSP, ZB) were isolated from permanently and periodically cold terrestrial habitats. Physiological and morphological studies, as well as phylogenetic analyses of the new isolates were performed. Based on sequences of the 16S rRNA and methyl-coenzyme M reductase a-subunit (mcrA) genes all new isolates are closely related to known mesophilic and psychrotolerant methanogens. Both, phylogenetic analyses and phenotypic properties allow to classify strains MT, MS, and MM as members of the genus Methanosarcina. Strain MT is a new ecotype of Methanosarcina mazei, whereas strains MM and MS are very similar to each other and can be assigned to the recently described psychrotolerant species Methanosarcina lacustris. The hydrogenotrophic strain MSP is a new ecotype of the genus Methanocorpusculum. The obligately methylotrophic strain ZB is closely related to Methanomethylovorans hollandica and can be classified as new ecotype of this species. All new isolates, including the strains from permanently cold environments, are not true psychrophiles according to their growth temperature characteristics. In spite of the ability of all isolates to grow at temperatures as low as 1-5 degrees C, all of them have their growth optima in the range of moderate temperatures (25-35 degrees C). Thus, they can be regarded as psychrotolerant organisms. Psychrotolerant methanogens are thought to play an important role in methane production in both, habitats under seasonal temperature variations or from permanently cold areas.  相似文献   

19.
The genus Shewanella is one of the typical deep-sea bacterial genera. Two isolated deep-sea Shewanella species, Shewanella benthica and Shewanella violacea, were found to be able to grow better under high hydrostatic pressure conditions than at atmospheric pressure. These species are not only piezophilic (barophilic), but also psychrophilic. Many psychrophilic and psychrotolerant Shewanella species have been isolated and characterized from cold environments, such as seawater in Antarctica or the North Sea. Some of these cold-adapted Shewanella were shown to be piezotolerant, meaning that growth occurs in a high-pressure habitat. In this review, we propose that two major sub-genus branches of the genus Shewanella should be recognized taxonomically, one group characterized as high-pressure cold-adapted species that produce substantial amounts of eicosapentaenoic acid, and the other group characterized as mesophilic pressure-sensitive species.  相似文献   

20.
The distribution and species diversity of aerobic organotrophic bacteria in the Dagang high-temperature oil field (China), which is exploited with water-flooding, have been studied. Twenty-two strains of the most characteristic thermophilic and mesophilic aerobic organotrophic bacteria have been isolated from the oil stratum. It has been found that, in a laboratory, the mesophilic and thermophilic isolates grow in the temperature, pH, and salinity ranges characteristic of the injection well near-bottom zones or of the oil stratum, respectively, and assimilate a wide range of hydrocarbons, fatty acids, lower alcohols, and crude oil, thus exhibiting adaptation to the environment. Using comparative phylogenetic 16S rRNA analysis, the taxonomic affiliation of the isolates has been established. The aerobic microbial community includes gram-positive bacteria with a high and low G+C content of DNA, and γ and β subclasses of Proteobacteria. The thermophilic bacteria belong to the genera Geobacillus and Thermoactinomyces, and the mesophilic strains belong to the genera Bacillus, Micrococcus, Cellulomonas, Pseudomonas, and Acinetobacter. The microbial community of the oil stratum is dominated by known species of the genus Geobacillus (G. subterraneus, G. stearothermophilus, and G. thermoglucosidasius) and a novel species “Geobacillus jurassicus.” A number of novel thermophilic oil-oxidizing bacilli have been isolated.__________Translated from Mikrobiologiya, Vol. 74, No. 3, 2005, pp. 401–409.Original Russian Text Copyright © 2005 by Nazina, Sokolova, Shestakova, Grigoryan, Mikhailova, Babich, Lysenko, Tourova, Poltaraus, Qingxian Feng, Fangtian Ni, Belyaev.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号