首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
程晓钰  李旻  肖龙  刘邓  王红梅 《微生物学报》2024,64(6):1922-1935
天体生物学作为与深空探测相结合的交叉学科,旨在从地球极端环境类比、古代生命载体信息发掘和模拟等方面揭示地外行星体是否适合生命生存和繁衍,其中适宜的环境条件是评价所有天体是否宜居的重要条件。近年来在月球和火星等行星表面发现了大量由火山熔岩流形成的熔岩管道,这些巨型管状地下空间具有稳定的温度和防辐射等环境条件,为生物在地外星体上的生存提供了潜在的庇护场所。基于地球熔岩管道的天体生物学的类比研究可以为探索地外生命痕迹提供重要线索,本文综述了现阶段地球熔岩管道内微生物的研究进展、微生物痕量气体代谢在天体生物学研究中的潜力及天体生物学的研究进展,旨在为后续开展地球及地外熔岩管道的天体生物学研究提供思路。  相似文献   

2.
NASA and ESA are planning missions to directly detect and characterize terrestrial planets outside our solar system (nominally NASA-Terrestrial Planet Finder and ESA-DARWIN missions). These missions will provide our first opportunity to spectroscopically study the global characteristics of those planets, and search for signs of habitability and life. We have used spatially and spectrally-resolved models to explore the observational sensitivity to changes in atmospheric and surface properties, and the detectability of surface biosignatures, in the globally averaged spectra and light-curves of the Earth. Atmospheric signatures of Earth-size exoplanets might be detected, in a near future, by stellar occultation as well. Detectability depends on planet’s size, atmospheric composition, cloud cover and stellar type. According to our simulations, Earth’s land vegetation signature (red-edge) is potentially visible in the disk-averaged spectra, even with cloud cover, and when the signal is averaged over the daily time scale. Marine vegetation is far more difficult to detect. We explored also the detectability of an exo-vegetation responsible for producing a signature that is red-shifted with respect to the Earth vegetation’s one. *Presented at National Workshop on Astrobiology: Search for Life in the Solar System, Capri, Italy, 26 to 28 October, 2005  相似文献   

3.
During the past years we have explored most of the bodies of the solar system by means of the Apollo, Venera, Viking, Voyager, and other space missions. We are now in a better position to be able to compare the conditions of other planets and satellites with those of the Earth in order to determine what is unique about our planet which permitted the emergence and evolution of life on it. On the basis of this and other available scientific information we have arrived at the conclusion that there are at least some twentyfive specific conditions or requirements which have to be fulfilled in order for life as we know it to appear and evolve in a planetary system such as ours. Most of these necessary conditions or requirements are mutually interdependent, but in order to discuss their role in depth they have been divided into five major general areas which are discussed in some detail herein. Planetary criteria, which relate to the physical properties of the planet as it is formed and as it becomes a differentiated cosmic body and potential abode of life. The mass, orbital characteristics and energetic relationships with the central star as well as the discrete separation of gas, liquid and solid phases of the planet are of utmost importance. Chemical criteria, which are concerned with the composition, availability of effective energy sources, and chemical constrainst (solvent, pH range, redox potential) of the environment(s) where reactions take place for the prebiological formation of biochemical compounds. Protobiological criteria, which relate to the prebiologically synthesized oligomeric and polymeric biomolecules, how they interact cooperatively to form protobiological structures and functions (replication, catalysis, information transfer, etc.) and self-assemble to give rise to a living system. Evolutionary criteria, which are concerned with the processes responsible for the increase in complexity of organisms by genomic multiplication, symbiotic integration and cellular differentiation, as well as with the negentropic ability of organisms to continuously recycle all the volatile biogenic elements. Altogether these processes made possible the development and evolution of life from the simplest prokaryotic cell ancestor to a cognitive and manipulative multicellular organism (man).In order to extend this inquiry to other systems beyond our solar system a fifth set of requirements based on astronomical observations is also discussed, namely, theStellar criteria, which relate to the elemental composition mass, lifetime, and other features of Main Sequence stars which may be surrounded by planetary systems similar to our own. Finally, a brief review is made on the probability of the existence of extraterrestrial life as well as of civilizations capable of interstellar communication in our Galaxy.Paper presented at the 6th College Park Colloquium, October 1981.  相似文献   

4.
Correcting Misperceptions about the History of Castanea Stands in Satoyama in Japan. Mistaken ideas about the naturalness of past and present landscapes are widespread in diverse cultures and in the scientific literature, and many of these ideas are only now being seriously challenged by current research (e.g., Erickson 2006; Fairhead and Leach 1996; Hall 1998; Ramankutty and Foley 1999; Willis et al. 2004). For example, the chestnut, Castanea crenata, has long been an important tree in Japanese culture, which has been cultivated, among other things, for its much loved edible nut and its valuable timber. Today, the widely-held view in Japan, which also appears in the scholarly and popular literature, is that in the past Castanea stands covered a large area throughout Japan, and these stands only disappeared because of economic development, especially in association with railway construction. Otaru, Hokkaido, is one of the places where people believe Castanea stands covered a large area and were deforested only recently. Local people in Otaru believe that the stand in Temiya Park has existed since the Jomon Period. For a more accurate historical perspective on Japanese forestation, we have performed pollen analysis to clarify the timing of the introduction of the Castanea tree into Otaru region and to reveal the history of this specific Castanea stand in Temiya Park. The results indicate that Castanea was first found in Otaru region 7100 B.P., but that it was not cultivated extensively until recently. Based on our study, and on data from this area dating to the late 19th century, we concluded instead that the Castanea stand we studied in Temiya Park, Otaru, was established after the mid-20th century. We believe the results of this study are applicable to Castanea stands in other parts of Japan as well.  相似文献   

5.
The possibility of the existence of life beyond planet Earth has always fascinated humans. However, due to certain circumstances such as the failure of the Viking expeditions to detect any sign of biotic activity on Mars, and the understanding that the presence of life would lead to drastic alterations in the atmosphere of the host planet (alterations that have never been detected on other planets or planetoids of the solar system), the belief that our planet is the only planet to sustain life inside the solar system originated. During the last three decades a series of new complex biological communities have been discovered, in the deep sea, inside caves isolated from the external biosphere, and deep inside the crust of our planet, and found to depend on geothermal energy instead of solar energy for their survival. These discoveries give us new evidence and hope that life might exist not only on other planets, but perhaps even in other planetoids of our solar system. Life may exist in regions other than the surface of a planet, and these areas would be extremely difficult to identify.  相似文献   

6.
Life in space     
The physical conditions of Space are most inhospitable and the higher forms of life probably could exist extraterrestrially only on Venus, Jupiter, and Saturn in our Solar System, and the chances there are poor in light of present knowledge. Thus intelligent life probably exists only on the Earth.Although indigenous intelligent extraterrestrial life seems to be improbable it is by no means clear that man cannot learn to live reasonably comfortably on most of our planets and planetoids such as our moon, and it seems certain that he will be able to travel great distances in the solar system.Lower forms of life may well occur extraterrestrially.  相似文献   

7.
Psychrophiles and polar regions   总被引:20,自引:0,他引:20  
Most reviews of microbial life in cold environments begin with a lament of how little is known about the psychrophilic (cold-loving) inhabitants or their specific adaptations to the cold. This situation is changing, as research becomes better focused by new molecular genetic (and other) approaches, by awareness of accelerated environmental change in polar regions, and by strong interest in the habitability of frozen environments elsewhere in the solar system. This review highlights recent discoveries in molecular adaptation, biodiversity and microbial dynamics in the cold, along with the concept of eutectophiles, organisms living at the critical interface inherent to the phase change of water to ice.  相似文献   

8.
Unlike other catarrhines, colobines show early molar eruption relative to that of the anterior dentition. The pattern is variable, with Asian genera (Presbytina) showing a greater variability than the African genera (Colobina). The polarity of early relative molar eruption, as well as the degree to which it is related to phylogeny, are unclear. Schultz (1935) suggested that the trend reflects phylogeny and is primitive for catarrhines. More recently, however, researchers have proposed that life history and dietary hypotheses account for early relative molar eruption. If the colobine eruption pattern is primitive for catarrhines, it implies that cercopithecines and hominoids converged on delayed relative molar eruption. Alternatively, if the colobine condition is derived, factors such as diet and mortality patterns probably shaped colobine eruption patterns. Here we update our knowledge on eruption sequences of living colobines, and explore the evolutionary history of the colobine dental eruption pattern by examining fossil colobine taxa from Eurasia (Mesopithecus) and Africa (Kuseracolobus aramisi and Colobus sp.) and the basal cercopithecoid Victoriapithecus macinnesi. We scored specimens per Harvati (2000). The Late Miocene-Early Pliocene Mesopithecus erupts the second molar early relative to the incisors, while the Early Pliocene Kuseracolobus aramisi does not. These results demonstrate that the common colobine tendency for early molar eruption relative to the anterior dentition had appeared by the Late Miocene, and that some of the diversity observed among living colobines was already established in the Late Miocene/Early Pliocene. We discuss the implications of these results for phylogenetic, life history, and dietary hypotheses of dental development.  相似文献   

9.
We present estimations of dipolar magnetic moments for terrestrial exoplanets using the Olson & Christiansen (EPS Lett 250:561–571, 2006) scaling law and assuming their interior structure is similar to Earth. We find that the dipolar moment of fast rotating planets (where the Coriolis force dominates convection in the core), may amount up to ~80 times the magnetic moment of Earth, M , for at least part of the planets’ lifetime. For slow rotating planets (where the force of inertia dominates), the dipolar magnetic moment only reaches up to ~1.5 M . Applying our calculations to confirmed rocky exoplanets, we find that CoRoT-7b, Kepler-10b and 55 Cnc e can sustain dynamos up to ~18, 15 and 13 M , respectively. Our results also indicate that the magnetic moment of rocky exoplanets not only depends on rotation rate, but also on their formation history, thermal state, age, composition, and the geometry of the field. These results apply to all rocky planets, but have important implications for the particular case of planets in the Habitable Zone of M-dwarfs.  相似文献   

10.
Here we address three misconceptions stated by Rice et al. in their observations of our article Paz-y-Mi?o and Espinosa (Evo Edu Outreach 2:655–675, 2009), published in this journal. The five authors titled their note “The Theory of Evolution is Not an Explanation for the Origin of Life.” First, we argue that it is fallacious to believe that because the formulation of the theory of evolution, as conceived in the 1800s, did not include an explanation for the origin of life, nor of the universe, the concept of evolution would not allow us to hypothesize the possible beginnings of life and its connections to the cosmos. Not only Stanley Miller’s experiments of 1953 led scientists to envision a continuum from the inorganic world to the origin and diversification of life, but also Darwin’s own writings of 1871. Second, to dismiss the notion of Rice et al. that evolution does not provide explanations concerning the universe or the cosmos, we identify compelling scientific discussions on the topics: Zaikowski et al. (Evo Edu Outreach 1:65–73, 2008), Krauss (Evo Edu Outreach 3:193–197, 2010), Peretó et al. (Orig Life Evol Biosph 39:395–406, 2009) and Follmann and Brownson (Naturwissenschaften 96:1265–1292, 2009). Third, although we acknowledge that the term Darwinism may not be inclusive of all new discoveries in evolution, and also that creationists and Intelligent Designers hijack the term to portray evolution as ideology, we demonstrate that there is no statistical evidence suggesting that the word Darwinism interferes with public acceptance of evolution, nor does the inclusion of the origin of life or the universe within the concept of evolution. We examine the epistemological and empirical distinction between the theory of evolution and the concept of evolution and conclude that, although the distinction is important, it should not compromise scientific logic.  相似文献   

11.

Background

Detecting microbial life in extraterrestrial locations is a goal of space exploration because of ecological and health concerns about possible contamination of other planets with earthly organisms, and vice versa. Previously we suggested a method for life detection based on the fact that living entities require a continual input of energy accessed through coupled oxidations and reductions (an electron transport chain). We demonstrated using earthly soils that the identification of extracted components of electron transport chains is useful for remote detection of a chemical signature of life. The instrument package developed used supercritical carbon dioxide for soil extraction, followed by chromatography or electrophoresis to separate extracted compounds, with final detection by voltammetry and tandem mass-spectrometry.

Results

Here we used Earth-derived soils to develop a related life detection system based on direct observation of a biological redox signature. We measured the ability of soil microbial communities to reduce artificial electron acceptors. Living organisms in pure culture and those naturally found in soil were shown to reduce 2,3-dichlorophenol indophenol (DCIP) and the tetrazolium dye 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide inner salt (XTT). Uninoculated or sterilized controls did not reduce the dyes. A soil from Antarctica that was determined by chemical signature and DNA analysis to be sterile also did not reduce the dyes.

Conclusion

Observation of dye reduction, supplemented with extraction and identification of only a few specific signature redox-active biochemicals such as porphyrins or quinones, provides a simplified means to detect a signature of life in the soils of other planets or their moons.  相似文献   

12.
With a large number of DNA and protein sequences already known, the crucial question is to find out how the biological function of these macromolecules is "written" in the sequence of nucleotides or amino acids. Biological processes in any living organism are based on selective interactions between particular bio-molecules, mostly proteins. The rules governing the coding of a protein's biological function, i.e. its ability to selectively interact with other molecules, are still not elucidated. In addition, with the rapid accumulation of databases of protein primary structures, there is an urgent need for theoretical approaches that are capable of analysing protein structure-function relationships. The Resonant Recognition Model (RRM) [1, 2] is one attempt to identify the selectivity of protein interactions within the amino acid sequence. The RRM [1, 2] is a physico-mathematical approach that interprets protein sequence linear information using digital signal processing methods. In the RRM the protein primary structure is represented as a numerical series by assigning to each amino acid in the sequence a physical parameter value relevant to the protein's biological activity. The RRM concept is based on the finding that there is a significant correlation between spectra of the numerical presentation of amino acids and their biological activity. Once the characteristic frequency for a particular protein function/interaction is identified, it is possible then to utilize the RRM approach to predict the amino acids in the protein sequence, which predominantly contribute to this frequency and thus, to the observed function, as well as to design de novo peptides having the desired periodicities. As was shown in our previous studies of fibroblast growth factor (FGF) peptidic antagonists [2, 3] and human immunodeficiency virus (HIV) envelope agonists [2, 4], such de novo designed peptides express desired biological function. This study utilises the RRM computational approach to the analysis of oncogene and proto-oncogene proteins. The results obtained have shown that the RRM is capable of identifying the differences between the oncogenic and proto-oncogenic proteins with the possibility of identifying the "cancer-causing" features within their protein primary structure. In addition, the rational design of bioactive peptide analogues displaying oncogenic or proto-oncogenic-like activity is presented here.  相似文献   

13.
This paper is an introduction to gravitational and space life sciences and a summary of key achievements in the field. Current global research is focused on understanding the effects of gravity/microgravity on microbes, cells, plants, animals and humans. It is now established that many plants and animals can progress through several generations in microgravity. Astrobiology is emerging as an exciting field promoting research in biospherics and fabrication of controlled environmental life support systems. India is one of the 14-nation International Space Exploration Coordination Group (2007) that hopes that someday humans may live and work on other planets within the Solar System. The vision statement of the Indian Space Research Organization (ISRO) includes planetary exploration and human spaceflight. While a leader in several fields of space science, India is yet to initiate serious research in gravitational and life sciences. Suggestions are made here for establishing a full-fledged Indian space life sciences programme.  相似文献   

14.
Recent models indicate that relatively moderate climates could exist on Earth-sized planets in synchronous rotation around red dwarf stars. Investigation of the global water cycle, availability of photosynthetically active radiation in red dwarf sunlight, and the biological implications of stellar flares, which can be frequent for red dwarfs, suggests that higher plant habitability of red dwarf planets may be possible.  相似文献   

15.
16.
Now that extrasolar planets have been found, it is timely to ask whether some of them might be suitable for life. Climatic constraints on planetary habitability indicate that a reasonably wide habitable zone exists around main sequence stars with spectral types in the early-F to mid-K range. However, it has not been demonstrated that planets orbiting such stars would be habitable when biologically-damaging energetic radiation is also considered. The large amounts of UV radiation emitted by early-type stars have been suggested to pose a problem for evolving life in their vicinity. But one might also argue that the real problem lies with late-type stars, which emit proportionally less radiation at the short wavelengths ( < 200 nm) required to split O2 and initiate ozone formation. We show here that neither of these concerns is necessarily fatal to the evolution of advanced life: Earth-like planets orbiting F and K stars may well receive less harmful UV radiation at their surfaces than does the Earth itself.  相似文献   

17.
The lpa1 mutations in maize are caused by lesions in the ZmMRP4 (multidrug resistance-associated proteins 4) gene. In previous studies (Raboy et al. in Plant Physiol 124:355–368, 2000; Pilu et al. in Theor Appl Genet 107:980–987, 2003a; Shi et al. Nat Biotechnol 25:930–937, 2007), several mutations have been isolated in this locus causing a reduction of phytic acid (myo-inositol-1,2,3,4,5,6-hexakisphosphate, or InsP6) content and an equivalent increasing of free phosphate. In particular, the lpa1-241 mutation causes a reduction of up to 90% of phytic acid, associated with strong pleiotropic effects on the whole plant. In this work, we show, for the first time to our knowledge, an interaction between the accumulation of anthocyanin pigments in the kernel and the lpa mutations. In fact the lpa1-241 mutant accumulates a higher level of anthocyanins as compared to wild type either in the embryo (about 3.8-fold) or in the aleurone layer (about 0.3-fold) in a genotype able to accumulate anthocyanin. Furthermore, we demonstrate that these pigments are mislocalised in the cytoplasm, conferring a blue pigmentation of the scutellum, because of the neutral/basic pH of this cellular compartment. As a matter of fact, the propionate treatment, causing a specific acidification of the cytoplasm, restored the red pigmentation of the scutellum in the mutant and expression analysis showed a reduction of ZmMRP3 anthocyanins’ transporter gene expression. On the whole, these data strongly suggest a possible interaction between the lpa mutation and anthocyanin accumulation and compartmentalisation in the kernel.  相似文献   

18.
Extremophilic Archaea populate biotopes previously considered inaccessible for life. This feature, and the possibility that they are the extant forms of life closest to the last common ancestor, make these organisms excellent candidates for the study of evolution on Earth and stimulate the exobiological research in planets previously considered totally inhospitable. Among the other aspects of the physiology of these organisms, the study of the molecular genetics of extremophilic Archaea can give hints on how the genetic information is transmitted and propagated in ancient forms of life. We review here the expression of interrupted genes in a recently discovered nanoarchaeon and the mechanisms of reprogrammed genetic decoding in Archaea. Presented at: National Workshop on Astrobiology: Search for Life in the Solar System, Capri, Italy, 26 to 28 October, 2005.  相似文献   

19.
New discoveries have fuelled the ongoing discussion of panspermia, i.e. the transport of life from one planet to another within the solar system (interplanetary panspermia) or even between different planetary systems (interstellar panspermia). The main factor for the probability of interstellar panspermia is the average density of stellar systems containing habitable planets. The combination of recent results for the formation rate of Earth-like planets with our estimations of extrasolar habitable zones allows us to determine the number of habitable planets in the Milky Way over cosmological time scales. We find that there was a maximum number of habitable planets around the time of Earth's origin. If at all, interstellar panspermia was most probable at that time and may have kick-started life on our planet.  相似文献   

20.
Today, the picture of an evolutionary tree is a very well-known visual image. It is almost impossible to think of the ancestry and relationships of living beings without it. As natural history museums play a major role in the public understanding of evolution, they often present a wide variety of evolutionary trees. However, many studies have shown (Baum and Offner 2008; Baum et al. 2005; Catley and Novick 2008; Evans 2009; Gregory 2008; Matuk 2007; Meir et al. 2007b; Padian 2008) that even though evolutionary trees have the potential to engage visitors of natural history museums with the phenomena of evolution, many of them unwittingly might lead to misunderstandings about the process. As valuable research and educational institutions, one of the museum’s important missions should be the careful design of their exhibits on evolution considering, for example, common preconceptions visitors often bring, such as the notion that evolution is oriented from simple toward complex organisms (incarnating the idea of a single ladder of life amidst the extraordinary diversity of organisms) and that humans are at the pinnacle of the evolutionary story, as well as na?ve interpretations of phylogenies. Our aim in this article is to show from history where many of these misunderstandings come from and to determine whether five important Western natural history museums inadvertently present “problematic” evolutionary trees (which might lead to non-scientific notions).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号