首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two dozen hybrid clones were produced by fusion of diploid embryonic stem (ES) cells positive for green fluorescent protein (GFP) with tetraploid fibroblasts derived from DD/c and C57BL-I(I)1RK mice. Cytogenetic analysis demonstrated that most cells from these hybrid clones contained near-hexaploid chromosome sets. Additionally, the presence of chromosomes derived from both parental cells was confirmed by polymerase chain reaction (PCR) analysis of polymorphic microsatellites. All hybrid cells were positive for GFP and demonstrated growth characteristics and fibroblast-like morphology. In addition, most hybrid cells were positive for collagen type I, fibronectin, and lamin A/C but were negative for Oct4 and Nanog proteins. Methylation status of the Oct4 and Nanog gene promoters was evaluated by bisulfite genomic sequencing analysis. The methylation sites (CpG-sites) of the Oct4 and Nanog gene promoters were highly methylated in hybrid cells, whereas the CpG-sites were unmethylated in the parental ES cells. Thus, the fibroblast genome dominated the ES genome in the diploid ES cell/tetraploid fibroblast hybrid cells. Immunofluorescent analysis of the pluripotent and fibroblast markers demonstrated that establishment of the fibroblast phenotype occurred shortly after fusion and that the fibroblast phenotype was further maintained in the hybrid cells. Fusion of karyoplasts and cytoplast derived from tetraploid fibroblasts with whole ES cells demonstrated that karyoplasts were able to establish the fibroblast phenotype of the reconstructed cells but not fibroblast cytoplasts. Thus, these data suggest that the dominance of parental genomes in hybrid cells of ES cell/somatic cell type depends on the ploidy of the somatic partner.  相似文献   

2.
Embryonic stem (ES) cells are pluripotent cells with the potential capacity to generate any type of cell. We describe here the isolation of pluripotent ES-like cells from equine blastocysts that have been frozen and thawed. Our two lines of ES-like cells (E-1 and E-2) appear to maintain a normal diploid karyotype indefinitely in culture in vitro and to express markers that are characteristic of ES cells from mice, namely, alkaline phosphatase, stage-specific embryonic antigen-1, STAT-3 and Oct 4. After culture of equine ES-like cells in vitro for more than 17 passages, some ES-like cells differentiated to neural precursor cells in the presence of basic fibroblast growth factor (bFGF), epidermal growth factor and platelet-derived growth factor. We also developed a protocol that resulted in the differentiation of ES-like cells in vitro to hematopoietic and endothelial cell lineages in response to bFGF, stem cell factor and oncostatin M. Our observations set the stage for future developments that may allow the use of equine ES-like cells for the treatment of neurological and hematopoietic disorders.  相似文献   

3.
Bovine embryonic stem-like cells (ES-like cells) appear to maintain a normal diploid karyotype indefinitely during culture in vitro and to express marker proteins that are characteristic of ES cells from mice, namely, alkaline phosphatase (AP), stage-specific embryonic antigen-1 (SSEA-1), STAT-3, and Oct 4. After proliferation of undifferentiated ES-like cells in vitro, some bovine ES-like cells differentiated to neural precursor cells, which were cultured in the presence of basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), and platelet-derived growth factor (PDGF). In addition, calves were successfully cloned using ES-like cells and the frequency of term pregnancies for blastocysts derived from ES-like cells was higher than those of early pregnancies and maintained pregnancies after nuclear transplantation (NT) with bovine somatic cells. Successful cloning from bovine ES-like cells should allow the introduction into cattle of specific genetic characteristics of biomedical and/or agricultural importance.  相似文献   

4.
NF-κB signaling plays an essential role in maintaining the undifferentiated state of embryonic stem (ES) cells. However, opposing roles of NF-κB have been reported in mouse and human ES cells, and the role of NF-κB in human induced pluripotent stem (iPS) cells has not yet been clarified. Here, we report the role of NF-κB signaling in maintaining the undifferentiated state of human iPS cells. Compared with differentiated cells, undifferentiated human iPS cells showed an augmentation of NF-κB activity. During differentiation induced by the removal of feeder cells and FGF2, we observed a reduction in NF-κB activity, the expression of the undifferentiation markers Oct3/4 and Nanog, and the up-regulation of the differentiated markers WT-1 and Pax-2. The specific knockdown of NF-κB signaling using p65 siRNA also reduced the expression of Oct3/4 and Nanog and up-regulated WT-1 and Pax-2 but did not change the ES-like colony formation. Our results show that the augmentation of NF-κB signaling maintains the undifferentiated state of human iPS and suggest the importance of this signaling pathway in maintenance of human iPS cells.  相似文献   

5.
Domestic animal embryonic stem (ES) cells would provide an invaluable research tool for genetic breeding and the production of transgenic animals. Unfortunately, authentic domestic animals ES cells have not been established despite progress made over more than two decades. Here, we show that ovine ES-like cells can be efficiently derived and propagated in a semi-defined medium that contains N2, B27, GSK3 inhibitor (CHIR99021), and basic fibroblast growth factor (bFGF). These ovine ES-like cells had a characteristic three-dimensional appearance, showed a bFGF dose-dependence, expressed specific markers such as alkaline phosphatase (AP), Oct-4, Sox2, Nanog and can be maintained for 30 passages. Moreover, these cells differentiated in vitro into neuronal cells, and formed teratomas containing a variety of different tissues including cartilage and neural tissue when injected into kidney capsules of severe combined immunodeficiency (SCID) mice. But the cell lines fail to contribute to embryonic development upon blastocyst transplantation. To our knowledge, this is the first experiment to use semi-defined medium without feeder-cells to derive ES-like cells from ovine blastocysts, and opens the door to deriving authentic ES cells from domesticated ungulates.  相似文献   

6.
7.
8.
9.
10.
Differentiated cells can be reprogrammed through the formation of heterokaryons and hybrid cells when fused with embryonic stem (ES) cells. Here, we provide evidence that conversion of human B-lymphocytes towards a multipotent state is initiated much more rapidly than previously thought, occurring in transient heterokaryons before nuclear fusion and cell division. Interestingly, reprogramming of human lymphocytes by mouse ES cells elicits the expression of a human ES-specific gene profile, in which markers of human ES cells are expressed (hSSEA4, hFGF receptors and ligands), but markers that are specific to mouse ES cells are not (e.g., Bmp4 and LIF receptor). Using genetically engineered mouse ES cells, we demonstrate that successful reprogramming of human lymphocytes is independent of Sox2, a factor thought to be required for induced pluripotent stem (iPS) cells. In contrast, there is a distinct requirement for Oct4 in the establishment but not the maintenance of the reprogrammed state. Experimental heterokaryons, therefore, offer a powerful approach to trace the contribution of individual factors to the reprogramming of human somatic cells towards a multipotent state.  相似文献   

11.
Embryonic stem (ES) cells are pluripotent cells with the capacity to generate any type of cell. Here we describe the isolation of ES-like cells from canine blastocysts. Canine embryos were collected from beagle bitches at day 11-16 of first estrus. A total of 80 normal embryos were obtained from 15 dogs. Of the embryos, 13 were at the morulae stage, 39 at the blastocyst stage, and 28 at the hatched blastocyst stage. The inside of morulae or inner cell masses (ICMs) of blastocysts were isolated mechanically, and cultured onto mouse embryonic fibroblasts (MEF) as feeder layers. Primary cell colonies were formed in 0% (0/13) of morulae, 25.6% (10/39) of blastocysts, and 67.9% (19/28) of hatched blastocysts. These colonies were separated either by enzymatic dissociation or by mechanical disaggregation. Dissociation with collagenase resulted in immediate differentiation, but with mechanical disaggregation these cells remained undifferentiated, and two ES-like cell lines (cES1, cES2) continued to grow in culture after eight passages. These cells had typical stem cell-like morphology and expressed specific markers such as alkaline phosphatase activity, stage specific embryonic antigen-1 and Oct-4. These cells formed embryoid bodies (EBs) in a suspension culture; extended culture of EBs resulted in the formation of cystic EBs. When the simple EBs were cultured on tissue culture plates, they differentiated into several types of cells including neuron-like, epithelium-like, fibroblast-like, melanocyte-like, and myocardium-like cells. These observations indicate that we successfully isolated and characterized canine ES-like cells.  相似文献   

12.
13.
14.
15.
Protoplasts of complementing auxotrophs of Candida albicans can fuse in the presence of polyethylene glycol and generate prototrophic cells. The yields of prototrophs from fusion mixtures depend greatly on the particular combinations of auxotrophies involved but not on other features of the strain backgrounds of protoplasts. The initial cellular products of fusions isolated on selective media are heterokaryons which replicate slowly but also segregate single parental nuclei into blastospores in high frequency. Karyogamy within heterokaryons produces hybrid nuclei which, on segregation, give rise to rapidly growing, uninucleate substrains. Analyses of the substrains show that hybrid nuclei either stabilize as diploid or undergo random loss of chromosomes to stabilize at various levels of aneuploidy prior to segregation. Chromosome losses and radiation induced mitotic crossing-over can effect recombination for parental auxotrophic markers in hybrids; patterns of recombination for ader and arg markers provide the first documented example of chromosomal linkage in C. albicans. Thus, protoplast fusions offer opportunities otherwise unavailable for applying the incisive tools of genetic recombination to analysis of this important, asexual yeast.  相似文献   

16.
17.
18.
The present study was designed to examine whether in vitro produced porcine embryos can be used to establish an embryonic stem (ES) cell line. Porcine embryos were produced by in vitro maturation and in vitro fertilization. Embryos at the 4-cell to blastocyst stages were cultured in an ES medium containing 16% fetal bovine serum with mouse embryonic fibroblasts as a feeder layer. It was found that ES-like colonies were derived only from blastocysts. When these ES-like colonies were separated in 0.25% trypsin-0.02% EDTA solution and cultured again, ES-like colonies were further observed in the subsequent culture until the fourth passage. The cells from ES-like colonies showed positive alkaline phosphatase activity. Some cells from the colonies differentiated into several types of cells in vitro when they were cultured in the medium without feeder layers and leukemin inhibitory factor. Embryoid bodies were also formed when the cells were cultured in a suspension status. These results indicate that porcine ES-like cells can be derived from in vitro produced porcine blastocysts and these ES-like cells are pluripotent. The culture system used in the present study is useful to isolate and culture ES cells from in vitro produced porcine embryos.  相似文献   

19.
20.
Ten embryonic stem (ES) cell lines from mink blastocysts were isolated and characterized. All the lines had a normal diploid karyotype; of the ten lines studied, five had the XX and five had the XY constitution. Testing of the pluripotency of the ES-like cells demonstrated that 1) among four lines of genotype XX, and X was late-replicating in three; both Xs were active in about one-third of cells of line MES8, and analysis of glucose-6-phosphate dehydrogenase revealed no dosage compensation for the X-linked gene; 2) when cultured in suspension, the majority of lines were capable of forming "simple" embryoid bodies (EB), and two only showed the capacity for forming "cystic" multilayer EBs. However, formation of ectoderm or foci of yolk sac hematopoiesis, a feature of mouse ES cells, was not observed in the "cystic" EB; 3) when cultured as a monolayer without feeder, the ES cells differentiated into either vimentin-positive fibroblast-like cells or cytokeratin-positive epithelial-like cells (less frequently); neural cells appeared in two lines; 4) when injected into athymic mice, only one of the four tested lines gave rise to tumors. These were fibrosarcomas composed of fibroblast-like cells, with an admixture of smooth muscular elements and stray islets of epithelial tissue; (5) when the ES cells of line MES1 were injected into 102 blastocyst cavities and subsequently transplanted into foster mothers, we obtained 30 offspring. Analysis of the biochemical markers and coat color did not demonstrate the presence of chimaeras among offspring. Thus the cell lines derived from mink blastocysts are true ES cells. However, their pluripotential capacities are restricted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号