首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyamines (PAs) are essential metabolites in eukaryotes, participating in a variety of proliferative processes, and in trypanosomatid protozoa play an additional role in the synthesis of the critical thiol trypanothione. The PAs are synthesized by a metabolic process which involves arginase (ARG), which catalyzes the enzymatic hydrolysis of l-arginine (l-Arg) to l-ornithine and urea, and ornithine decarboxylase (ODC), which catalyzes the enzymatic decarboxylation of l-ornithine in putrescine. The S-adenosylmethionine decarboxylase (AdoMetDC) catalyzes the irreversible decarboxylation of S-adenosylmethionine (AdoMet), generating the decarboxylated S-adenosylmethionine (dAdoMet), which is a substrate, together with putrescine, for spermidine synthase (SpdS). Leishmania parasites and all the other members of the trypanosomatid family depend on spermidine for growth and survival. They can synthesize PAs and polyamine precursors, and also scavenge them from the microenvironment, using specific transporters. In addition, Trypanosomatids have a unique thiol-based metabolism, in which trypanothione (N1-N8-bis(glutathionyl)spermidine, T(SH)2) and trypanothione reductase (TR) replace many of the antioxidant and metabolic functions of the glutathione/glutathione reductase (GR) and thioredoxin/thioredoxin reductase (TrxR) systems present in the host. Trypanothione synthetase (TryS) and TR are necessary for the protozoa survival. Consequently, enzymes involved in spermidine synthesis and its utilization, i.e. ARG, ODC, AdoMetDC, SpdS and, in particular, TryS and TR, are promising targets for drug development.  相似文献   

2.
 The effects of various compounds bearing an N-OH group such as N-hydroxy-guanidines, amidoximes, and hydroxylamines, on bovine and rat liver arginases was studied. Some of these compounds with an l-α-amino acid function at an appropriate distance from the N-OH group acted as strong competitive liver arginase inhibitors, displaying Ki values between 4 and 150 μM. Two compounds, N ε-hydroxy-l-lysine and N ω-hydroxy-d,l-indospicine, which exhibited Ki values of 4 and 20 μM (at pH 7.4), were the most potent inhibitors of arginase described to date. The distance between the α-amino acid and N-OH functions appeared to be crucial for potent inhibition of arginase, as N δ-hydroxy-l-ornithine, which has one -CH2 group less than N ε-hydroxy-l-lysine, exhibited a 37-fold higher Ki value than N ε-hydroxy-l-lysine. Based on these results, a model for the interaction of N ω-hydroxyamino-l-α-amino acids with the arginase active site is proposed. This model involves the binding of the N-OH group of the inhibitors to the arginase Mn(II) center and suggests that N ε-hydroxy-l-lysine is a good transition state analog of arginase.  相似文献   

3.
We recently proposed a metabolic engineering strategy for l-ornithine production based on the hypothesis that an increased intracellular supply of N-acetylglutamate may further enhance l-ornithine production in a well-defined recombinant strain of Corynebacterium glutamicum. In this work, an argJ-deficient arginine auxotrophic mutant of C. glutamicum is suppressed by a different locus of C. glutamicum ATCC13032. Overexpression of the NCgl1469 open reading frame (ORF), exhibiting N-acetylglutamate synthase (NAGS) activity, was able to complement the C. glutamicum arginine-auxotrophic argJ strain and showed increased NAGS activity from 0.03 to 0.17 units mg−1 protein. Additionally, overexpression of the NCgl1469 ORF resulted in a 39% increase in excreted l-ornithine. These results indicate that the intracellular supply of N-acetylglutamate is a rate-limiting step during l-ornithine production in C. glutamicum.  相似文献   

4.
In Bacteria, the pathways of polyamine biosynthesis start with the amino acids l-lysine, l-ornithine, l-arginine, or l-aspartic acid. Some of these polyamines are of special interest due to their use in the production of engineering plastics (e.g., polyamides) or as curing agents in polymer applications. At present, the polyamines for industrial use are mainly synthesized on chemical routes. However, since a commercial market for polyamines as well as an industry for the fermentative production of amino acid exist, and since bacterial strains overproducing the polyamine precursors l-lysine, l-ornithine, and l-arginine are known, it was envisioned to engineer these amino acid-producing strains for polyamine production. Only recently, researchers have investigated the potential of amino acid-producing strains of Corynebacterium glutamicum and Escherichia coli for polyamine production. This mini-review illustrates the current knowledge of polyamine metabolism in Bacteria, including anabolism, catabolism, uptake, and excretion. The recent advances in engineering the industrial model bacteria C. glutamicum and E. coli for efficient production of the most promising polyamines, putrescine (1,4-diaminobutane), and cadaverine (1,5-diaminopentane), are discussed in more detail.  相似文献   

5.
Sporosarcina ureae BS 860, a motile, sporeforming coccus, possesses the enzymes required for a functioning urea (ornithine) cycle. This is only the second known example of urea cycle activity in a prokaryote. Specific activities are reported for ornithine carbamoyltransferase, argininosuccinase, arginase, and urease. Although argininosuccinate synthetase activity could not be detected directly in crude cell extracts, indirect evidence from radiocarbon tracing data for arginine synthesis from the substrate, l-[1-14C]-ornithine, strongly suggest the presence of this or other similar enzyme activity. Furthermore, good growth in defined media containing either 1.0% glutamine, ornithine, or citrulline as sole carbon sources suggests argininosuccinate synthetase activity is necessary for arginine synthesis. The effect of varying pH on arginase and urease activities indicate that these two enzymes may function within the context of the urea cycle to generate ammonia for amino acid synthesis, as well as for raising the pH of the growth micro-environment.  相似文献   

6.
A recombinant arginase was generated for a whole-cell biotransformation system to convert l-arginine to l-ornithine in Escherichia coli. The gene ARG1 coding arginase from Bos taurus liver was synthesized and expressed in E. coli BL21 (DE3) via pETDuet-1. The recombinant arginase was used to catalyze l-arginine to l-ornithine and urea. The reaction was optimal at pH 9.5 and 37 °C. Manganese (10?5 M) and Emulsifier OP-10 [0.033 % (v/v)] could promote arginase activity. In a scale up study, l-arginine conversion rate reached 98 % with a final concentration of 111.52 g l-ornithine/l.  相似文献   

7.
The effect of casein hydrolysate, of mixtures of amino acids and of individual amino acids on the growth of 4 strains ofSphaerotilus discophorus was determined. Growth was virtually completely inhibited by 1.0% Bacto Casamino Acids, 0.54% simulated casein hydrolysate and 0.2% of a uniform mixture of 18 amino acids. The latter were prepared withl amino acids except thatdl-serine,dl-valine anddl-threonine were present in the uniform amino acid mixture.Experiments designed to test the toxicity of the 18 individual amino acids at 0.018 – 0.36% concentration indicated that arginine, glutamic acid, leucine, lysine and proline were non-toxic. However, aspartic acid and methionine were moderately toxic; growth was greatly repressed at a concentration of 0.36%. The remaining 11 amino acids which included alanine, cystine, glycine, tyrosine, histidine, isoleucine, phenylalanine, serine, threonine, tryptophane and valine were the most toxic of the group. They prevented growth partially or completely, at a concentration of 0.18% or 0.36%.dl-Serine anddl-valine were especially toxic and prevented growth at a concentration of 0.018%. The toxicity of the individuall-amino acids can account for the toxicity of Casamino Acids and simulated casein hydrolysate. l-Methionine or cyanocobalamin (vitamin B12) is required for the growth ofS. discophorus. Alsod- anddl-methionine can replace cyanocobalamin although they completely repress growth when used at the relatively high concentration of 200 µg per ml of medium.  相似文献   

8.
 Rat liver arginase contains a dinuclear Mn2(II,II) center in each subunit having EPR properties similar to those observed in Mn-catalases. The principal physiologic role of arginase is catalyzing the hydrolytic cleavage of l-arginine to produce l-ornithine and urea. Here we demonstrate that arginase catalyzes the disproportionation of hydrogen peroxide by a redox mechanism analogous to Mn-catalases, but at rates that are 10–5 to 10–6 of k cat for the Mn-catalases, and also exhibits peroxidase activity. The dinuclear Mn2(II,II) center is essential for maximal catalase activity, since both the H101N and H126N mutant arginases containing only one Mn(II)/subunit have catalase activities that are <3% of that for the wild-type enzyme. Like the Mn-catalases, the catalase activity of arginase is not inhibited by millimolar concentrations of CN, the most potent inhibitor of heme catalases, or by EDTA, a chelator of free metal ions. The catalase activity of arginase is not significantly inhibited by Cl or F, in contrast to Mn-catalases, while potent inhibitors of the hydrolytic activity are also effective inhibitors of the catalase activity. These results suggest that lower affinity of hydrogen peroxide to the active site of arginase contributes to the lower catalase activity. EPR spectroscopy reveals that potent inhibitors of the hydrolytic reaction, including N ω-hydroxy-l-arginine, l-lysine, and l-valine, decouple the electronic interaction between the Mn2+ ions, most probably by removing a μ-bridging ligand or by increasing the intermanganese separation. The capacity for arginase to deliver a hydroxide ion to hydrolyze the l-arginine substrate is suggested to arise from a "dinuclear effect", wherein the two metal ions contribute more or less equivalently in deprotonation of metal-bound water molecule. Structure-reactivity analyses of these reactions will provide insights into the factors that control redox versus hydrolytic function in dimanganese clusters. Received: 18 November 1996 / Accepted: 7 April 1997  相似文献   

9.
Sulfamoylation of the l-ornithine methyl ester side-chain generates a non-natural arginine isostere which can be coupled with N-Fmoc-l-proline to synthesize analogues which maintain the structural characteristics of the biologically important Pro-Arg dipeptide sequence. As a probe of its biological importance, the sulfamoylated amino acid derivative was also incorporated as P1 residue in tripeptide structures matching the C-terminal subsequence of fibrinogen. The reported results demonstrate that the functionalization of l-ornithine side-chain with a neutral sulfamoyl group can generate an arginine bioisostere which can be used for the synthesis of prototypes of a new class of human thrombin inhibitors.  相似文献   

10.
Summary The effects of poly-l-ornithine on the surface membrane of isolated tobacco protoplasts have been examined in the electron microscope using a colloidal metal oxide and a spherical virus as marker substances. No evidence was found to suggest that isolated protoplasts take up either of these markers by a pinocytotic process. Poly-l-ornithine increased the degree of damage observed in fixed preparations, and specifically caused lesions of the plasmalemma which were favoured sites for the binding of both external marker substances. It is suggested that the function of poly-l-ornithine and other treatments used to obtain virus infection of protoplasts is to stress the cell membrane to allow a non-physiological entry of high molecular weight materials. Pinocytosis appears not to occur nor to be necessary for uptake of these materials under conditions of membrane stress.  相似文献   

11.
In the present study, we characterized the distribution of human cationic amino acid transporters 1 (hCAT1) and 2 (hCAT2) in healthy skin and compared it to psoriatic skin lesions by means of immunohistochemistry. Moreover, we tested the hypothesis that l-arginine and l-ornithine influence the expression and synthesis of hCAT1 and hCAT2 in cell culture experiments by means of real-time-PCR and Western blot. Immunohistochemical comparison between healthy and psoriatic skin revealed a decreased amount of hCAT1, especially in the stratum granulosum of psoriatic skin; the distribution pattern of hCAT2 was not significantly affected in psoriatic skin. Cell culture experiments showed that supraphysiological concentrations of 15 mM l-arginine (72 h) lead to a significant increase of the hCAT1-mRNA and protein expression, whereas other concentrations had no significant influence. In contrast, l-arginine concentrations of 2 mM led to a significant increase of the hCAT2B mRNA-expression after 24 h. However, 48 and 72 h revealed no significant changes and high concentrations (15 mM l-arginine) led to a significant downregulation of the hCAT2B transporter over all time points analyzed. l-ornithine had no effect on the hCAT1 expression of mRNA and protein level. On the other hand the expression of hCAT2B was significantly up regulated at a 5-mM concentration of l-ornithine at all analyzed time points. Other concentrations had no effect. For the first time, the findings yield data about hCAT1 and hCAT2 on protein-level and suggest that l-arginine is a worthwhile object of studies, which investigated l-arginine as a possible therapeutic agent to reduce psoriatic symptoms.  相似文献   

12.
We examined the effects of polyamines, namely, putrescine, spermidine and spermine, and of amino acids, such as l-arginine and l-ornithine, as part of our efforts to identify factors that stimulate the development of proembryogenic masses (PEMs) of Cryptomeria japonica. We maintained two distinct types of PEM designated PEMs A, which consisted of normal embryogenic cells as single embryos with elongated suspensor cells, and PEMs B, which consisted of abnormal embryogenic cells with coalesced embryos on modified Campbell and Durzan medium (mCD) supplemented with individual polyamines at 0–100 μM or amino acids at 0–16.4 mM. All additives had a stimulatory/suppressive effect. Microscopy and image-processing techniques revealed that the regions of authentic embryos of PEMs that were treated with l-ornithine were remarkably enlarged and that the suspensor cells had elongated in the same direction. When all PEMs A were transferred to maturation medium (mCD that contained abscisic acid and maltose at various concentrations), only PEMs that had been treated with l-ornithine matured into somatic embryos and were able to germinate on hormone-free mCD. Our results indicate that l-ornithine is an important stimulator of the development of PEMs to the pre-filamentous stage in C. japonica.  相似文献   

13.
A series of N α-acyl (alkyl)- and N α-alkoxycarbonyl-derivatives of l- and d-ornithine were prepared, characterized, and analyzed for their potency toward the bacterial enzyme N α-acetyl-l-ornithine deacetylase (ArgE). ArgE catalyzes the conversion of N α-acetyl-l-ornithine to l-ornithine in the fifth step of the biosynthetic pathway for arginine, a necessary step for bacterial growth. Most of the compounds tested provided IC50 values in the μM range toward ArgE, indicating that they are moderately strong inhibitors. N α-chloroacetyl-l-ornithine (1g) was the best inhibitor tested toward ArgE providing an IC50 value of 85 μM while N α-trifluoroacetyl-l-ornithine (1f), N α-ethoxycarbonyl-l-ornithine (2b), and N α-acetyl-d-ornithine (1a) weakly inhibited ArgE activity providing IC50 values between 200 and 410 μM. Weak inhibitory potency toward Bacillus subtilis-168 for N α-acetyl-d-ornithine (1a) and N α-fluoro- (1f), N α-chloro- (1g), N α-dichloro- (1h), and N α-trichloroacetyl-ornithine (1i) was also observed. These data correlate well with the IC50 values determined for ArgE, suggesting that these compounds might be capable of getting across the cell membrane and that ArgE is likely the bacterial enzymatic target.  相似文献   

14.
The experiments presented here were based on the conclusions of our previous proteomic analysis. Increasing the availability of glutamate by overexpression of the genes encoding enzymes in the l-ornithine biosynthesis pathway upstream of glutamate and disruption of speE, which encodes spermidine synthase, improved l-ornithine production by Corynebacterium glutamicum. Production of l-ornithine requires 2 moles of NADPH per mole of l-ornithine. Thus, the effect of NADPH availability on l-ornithine production was also investigated. Expression of Clostridium acetobutylicum gapC, which encodes NADP-dependent glyceraldehyde-3-phosphate dehydrogenase, and Bacillus subtilis rocG, which encodes NAD-dependent glutamate dehydrogenase, led to an increase of l-ornithine concentration caused by greater availability of NADPH. Quantitative real-time PCR analysis demonstrates that the increased levels of NADPH resulted from the expression of the gapC or rocG gene rather than that of genes (gnd, icd, and ppnK) involved in NADPH biosynthesis. The resulting strain, C. glutamicum ΔAPRE::rocG, produced 14.84 g l?1 of l-ornithine. This strategy of overexpression of gapC and rocG will be useful for improving production of target compounds using NADPH as reducing equivalent within their synthetic pathways.  相似文献   

15.
N5-(l-1-Carboxyethyl)-l-ornithine: NADP+ oxidoreductase [N5-(CE)ornithine synthase] catalyzes the NADPH-dependent reductive condensation between pyruvic acid and the terminal amino group ofl-ornithine andl-lysine to yield N5-(l-1-carboxyethyl)-l-ornithine and N6-(l-1-carboxyethyl)-l-lysine respectively. Polyclonal antibodies against N5-(CE)ornithine synthase purified fromStreptococcus lactis K1 have been used for the immunochemical (Western blot) detection and sizing of this enzyme in various lactic acid bacteria. The enzyme was confined to about one-half of the strains ofS. lactis examined. N5-(CE)ornithine synthase is constitutive, and in strains K1, 6F3, and (plasmid-free)H1-4125 the native enzyme is a tetramer composed of identical subunits of Mr=38,000. However, in other strains, including 133 (ATCC 11454), C10, and ML8, the molecular weight of the native enzyme is approximately 130,000 and the corresponding subunit Mr=35,000. Analyses of the amino acid pool components maintained byS. lactis K1 during growth in medium containing [14C] labeled and unlabeled arginine have revealed that (i) exogenous arginine is the precursor of intracellular ornithine, citrulline, and N5-(CE)ornithine, and (ii) the rates of turnover of ornithine and citrulline were considerably faster than that of N5-(CE)ornithine. These data account for the biosynthesis and accumulation of N5-(CE)ornithine byS. lactis.  相似文献   

16.
Most Pseudomonas aeruginosa PAO mutants which were unable to utilize l-arginine as the sole carbon and nitrogen source (aru mutants) under aerobic conditions were also affected in l-ornithine utilization. These aru mutants were impaired in one or several enzymes involved in the conversion of N2-succinylornithine to glutamate and succinate, indicating that the latter steps of the arginine succinyltransferase pathway can be used for ornithine catabolism. Addition of aminooxyacetate, an inhibitor of the N2-succinylornithine 5-aminotransferase, to resting cells of P. aeruginosa in ornithine medium led to the accumulation of N2-succinylornithine. In crude extracts of P. aeruginosa an ornithine succinyltransferase (l-ornithine:succinyl-CoA N2-succinyltransferase) activity could be detected. An aru mutant having reduced arginine succinyltransferase activity also had correspondingly low levels of ornithine succinyltransferase. Thus, in P. aeruginosa, these two activities might be due to the same enzyme, which initiates aerobic arginine and ornithine catabolism.Abbreviations OAT ornithine 5-aminotransferase - SOAT N2-succinylornithine 5-aminotransferase - Oru ornithine utilization - Aru arginine utilization  相似文献   

17.
Production of 3,4-dihydroxy phenyl-l-alanine (l-DOPA) using an Egyptian isolate of halophilic black yeast was studied. Optimum aeration level and incubation period for high yield production of l-DOPA were 50 ml medium/250 ml flask with 200 rpm and 36 h, respectively. Two new techniques (addition of aniline or NaCl to the medium) have been investigated to enhance the monophenolase activity and inhibit or reduce diphenolase activity of tyrosinase to form high yield of l-DOPA without more oxidation to melanin. Addition of aniline to tyrosine medium at 3 μl/ml medium enhanced l-DOPA production 2.9 fold, however, addition of NaCl at 20% showed the same amount of l-DOPA as the control. Peptone and ram horn hydrolysate were studied as nitrogen sources instead of tyrosine in the medium and they showed good nitrogen sources for l-DOPA production as tyrosine. Finally, addition of aniline (3 μl/ml) to ram horn hydrolysate was economically feasible and cost effective for l-DOPA production by Egyptian halophilic black yeast.  相似文献   

18.
Summary The process of virus infection of protoplasts isolated from tobacco leaves has been examined by means of electron microscopy. Immediately after inoculation, virus particles appear at two types of site: trapped in complex surface lesions of the plasmalemma, or in peripheral cytoplasmic vesicles. The complex lesions are only visible after treatment of the protoplasts with inocula containing poly-l-ornithine. With infection by tobacco mosaic virus and cowpea chlorotic mottle virus, which require poly-l-ornithine, the majority of virus particles occur at lesion sites. Pea enation mosaic virus, which does not require poly-l-ornithine for infection to become established, is found predominantly and in high numbers in peripheral vesicles. The behaviour of these three viruses is discussed in terms of a probable mechanism for infection of the protoplasts.  相似文献   

19.
Hira T  Ohyama S  Hara H 《Amino acids》2003,24(4):389-396
Summary.  Previously, we found that guanidinated casein, a l-homoarginine-containing protein, was a more potent stimulator of pancreatic enzyme secretion than intact casein in rats. In this study, we examined secretory response and adaptation of the exocrine pancreas to the administration of free l-homoarginine in normal and bile-pancreatic juice (BPJ)-diverted rats. An intraperitoneal injection of l-homoarginine (10 mg/rats) produced immediate and transient reduction in pancreatic secretion in BPJ-diverted rats, but not in normal rats. The BPJ-diverted rats were fed with either a 25% casein, 45% casein, or 45% casein diet supplemented with l-homoarginine (19 g/kg diet) for 4 days. Feeding of a diet containing l-homoarginine inhibited the pancreatic adaptation induced by the high-protein diet. These results indicate that l-homoarginine has an inhibitory effect on the secretion and production of exocrine pancreatic enzyme in BPJ-diverted rats, and l-homoarginine may have an antagonistic effect on CCK receptors. Received July 1, 2002 Accepted August 28, 2002 Published online December 20, 2002 Authors' address: Dr. Hiroshi Hara, Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan E-mail: hara@chem.agr.hokudai.ac.jp  相似文献   

20.
Staphylococcus saprophyticus strains ATCC 15305, ATCC 35552, and ATCC 49907 were found to require l-proline but not l-arginine for growth in a defined culture medium. All three strains could utilize l-ornithine as a proline source and contained l-ornithine aminotransferase and Δ1-pyrroline-5-carboxylate reductase activities; strains ATCC 35552 and ATCC 49907 could use l-arginine as a proline source and had l-arginase activity. The proline requirement also could be met by l-prolinamide, l-proline methyl ester, and the dipeptides l-alanyl-l-proline and l-leucyl-l-proline. The bacteria exhibited l-proline degradative activity as measured by the formation of Δ1-pyrroline-5-carboxylate. The specific activity of proline degradation was not affected by addition of l-proline or NaCl but was highest in strain ATCC 49907 after growth in Mueller–Hinton broth. A membrane fraction from this strain had l-proline dehydrogenase activity as detected both by reaction of Δ1-pyrroline-5-carboxylate with 2-aminobenzaldehyde (0.79 nmol min−1 mg−1) and by the proline-dependent reduction of p-iodonitrotetrazolium (20.1 nmol min−1 mg−1). A soluble fraction from this strain had Δ1-pyrroline-5-carboxylate dehydrogenase activity (88.8 nmol min−1 mg−1) as determined by the NAD+-dependent oxidation of dl1-pyrroline-5-carboxylate. Addition of l-proline to several culture media did not increase the growth rate or final yield of bacteria but did stimulate growth during osmotic stress. When grown with l-ornithine as the proline source, S. saprophyticus was most susceptible to the proline analogues L-azetidine-2-carboylate, 3,4-dehydro-dl-proline, dl-thiazolidine-2-carboxylate, and l-thiazolidine-4-carboxylate. These results indicate that proline uptake and metabolism may be a potential target of antimicrobial therapy for this organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号