首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Like all macroorganisms, plants have to control bacterial biofilm formation on their surfaces. On the other hand, biofilms are highly tolerant against antimicrobial agents and other stresses. Consequently, biofilms are also involved in human chronic infectious diseases, which generates a strong demand for anti-biofilm agents. Therefore, we systematically explored major plant flavonoids as putative anti-biofilm agents using different types of biofilms produced by Gram-negative and Gram-positive bacteria. In Escherichia coli macrocolony biofilms, the flavone luteolin and the flavonols myricetin, morin and quercetin were found to strongly reduce the extracellular matrix. These agents directly inhibit the assembly of amyloid curli fibres by driving CsgA subunits into an off-pathway leading to SDS-insoluble oligomers. In addition, they can interfere with cellulose production by still unknown mechanisms. Submerged biofilm formation, however, is hardly affected. Moreover, the same flavonoids tend to stimulate macrocolony and submerged biofilm formation by Pseudomonas aeruginosa. For Bacillus subtilis, the flavonone naringenin and the chalcone phloretin were found to inhibit growth. Thus, plant flavonoids are not general anti-biofilm compounds but show species-specific effects. However, based on their strong and direct anti-amyloidogenic activities, distinct plant flavonoids may provide an attractive strategy to specifically combat amyloid-based biofilms of some relevant pathogens.  相似文献   

2.
Microorganisms embedded in a biofilm are significantly more resistant to antimicrobial agents and the defences of the human immune system, than their planktonic counterpart. Consequently, compounds that can inhibit biofilm formation are of great interest for novel therapeutics. In this study, a screening approach was used to identify novel cyclic dipeptides that have anti-biofilm activity against oral pathogens. Five new active compounds were identified that prevent biofilm formation by the cariogenic bacterium Streptococcus mutans and the pathogenic fungus Candida albicans. These compounds also inhibit the adherence of microorganisms to a hydroxylapatite surface. Further investigations were conducted on these compounds to establish the structure–activity relationship, and it was deduced that the common cleft pattern is required for these molecules to act effectively against biofilms.  相似文献   

3.
Bacterial biofilms are defined as a community of surface-attached bacteria that are protected by an extracellular matrix of biomolecules. We have recently reported the synthesis of a small molecule, denoted TAGE, based on the natural product bromoageliferin and demonstrated that TAGE has anti-biofilm activity against Pseudomonas aeruginosa. Herein we demonstrate that TAGE: (1) does not have selective toxicity against cells within the biofilm state, (2) will inhibit biofilm development under flow conditions, indicating that the CV staining protocol correlates with the ability to be active under biomimetic conditions, and (3) will disperse preformed P. aeruginosa biofilms. We also present preliminary toxicity work that indicates that TAGE is devoid of cytotoxicity in rat and mice cell lines. Advanced derivatives of TAGE have generated compounds shown to be exceedingly effective as biofilm inhibitors against the gamma-proteobacteria in this study (P. aeruginosa strains PAO1, PA14, PDO300, and Acinetobacter baumannii). TAGE derivatives also possessed anti-biofilm activity against the beta-proteobacterium Bordetella bronchiseptica (Rb50) and the Gram-positive bacterium Staphylococcus aureus;TAGE derivatives inhibited the formation of biofilms, however, some of this activity is attributed to microbicidal activity. The TAGE derivatives presented in this study, however, do not disperse pre-formed biofilms with the same efficiency as TAGE.  相似文献   

4.
细菌生物膜导致的细菌耐药性增加受到了广泛关注。抗生物膜肽是一类具有抑制和杀灭细菌生物膜独特优势的抗微生物肽,有望成为理想的抗细菌生物膜的新型抗菌药物。就抗生物膜肽与生物膜各组分间的相互作用、抗生物膜肽对生物膜形成的干预作用及其调控、抗生物膜肽目前存在的问题及其解决思路以及抗生物膜肽未来的应用领域等展开综述。  相似文献   

5.
6.
Biofilm formation by pathogenic bacteria is an important virulence factor in the development of numerous chronic infections, thereby causing a severe health burden. Many of these infections cannot be resolved, as bacteria in biofilms are resistant to the host’s immune defenses and antibiotic therapy. An urgent need for new strategies to treat biofilm-based infections is critically needed. Cyclic di-GMP (c-di-GMP) is a widely conserved second-messenger signal essential for biofilm formation. The absence of this signalling system in higher eukaryotes makes it an attractive target for the development of new anti-biofilm agents. In this study, the results of an in silico pharmacophore-based screen to identify small-molecule inhibitors of diguanylate cyclase (DGC) enzymes that synthesize c-di-GMP are described. Four small molecules, LP 3134, LP 3145, LP 4010 and LP 1062 that antagonize these enzymes and inhibit biofilm formation by Pseudomonas aeruginosa and Acinetobacter baumannii in a continuous-flow system are reported. All four molecules dispersed P. aeruginosa biofilms and inhibited biofilm development on urinary catheters. One molecule dispersed A. baumannii biofilms. Two molecules displayed no toxic effects on eukaryotic cells. These molecules represent the first compounds identified from an in silico screen that are able to inhibit DGC activity to prevent biofilm formation.  相似文献   

7.
Staphylococcus epidermidis has become a significant pathogen causing infections due to biofilm formation on surfaces of indwelling medical devices. Biofilm-associated bacteria exhibit enhanced resistance to many conventional antibiotics. It is therefore, important to design novel antimicrobial reagents targeting S. epidermidis biofilms. In a static chamber system, the bactericidal effect of two leading compounds active as YycG inhibitors was assessed on biofilm cells by confocal laser scanning microscopy combined with viability staining. In young biofilms (6-h-old), the two compounds killed the majority of the embedded cells at concentrations of 100 microM and 25 microM, respectively. In mature biofilms (24-h-old), one compound was still effectively killing biofilm cells, whereas the other compound mainly killed cells located at the bottom of the biofilm. In contrast, vancomycin was found to stimulate biofilm development at the MBC (8 microg mL(-1)). Even at a high concentration (128 microg mL(-1)), vancomycin exhibited poor killing on cells embedded in biofilms. The two compounds exhibited faster and more effective killing of S. epidermidis planktonic cells than vancomycin at the early stage of exposure (6 h). The data suggest that the new inhibitors can serve as potential agents against S. epidermidis biofilms when added alone or in concert with other antimicrobial agents.  相似文献   

8.
Biofilms are bacterial communities consisting of numerous extracellular polymeric substances. Infections caused by biofilm-forming bacteria are considered to be a major threat to health security and so novel approaches to control biofilm are of importance. Aptamers are single-strand nucleic acid molecules that have high selectivity to their targets. Single-walled carbon nanotubes (SWNTs) are common nanomaterials and have been shown to be toxic to bacterial biofilms. The aim of this study was to test whether an aptamer could play a role as targeting agents to enhance the efficiency of anti-biofilm agents. Hence, two complexes (aptamer–SWNTs and aptamer–ciprofloxacin–SWNTs) based on an aptamer which targets Pseudomonas aeruginosa and SWNTs were constructed. Both complexes were assessed against P. aeruginosa biofilms. In vitro tests demonstrated that the aptamer–SWNTs could inhibit ~36% more biofilm formation than SWNTs alone. Similarly, the aptamer–ciprofloxacin–SWNTs had a higher anti-biofilm efficiency than either component or simple mixtures of two components. Our study underscores the potential of aptamers as targeting agents for anti-biofilm compounds, as well as providing a new strategy to control biofilms.  相似文献   

9.
The ability of opportunistic bacterial pathogens to grow in biofilms is decisive in the pathogenesis of chronic infectious diseases. Growth within biofilms does not only protect the bacteria against the host immune system but also from the killing by antimicrobial agents. Here, we introduce a mouse model in which intravenously administered planktonic Pseudomonas aeruginosa bacteria are enriched in transplantable subcutaneous mouse tumors. Electron microscopy images provide evidence that such bacteria reside in the tumor tissue within biofilm structures. Immunohistology furthermore demonstrated that infection of the tumor tissue elicits a host response characterized by strong neutrophilic influx. Interestingly, the biofilm defective PA14 pqsA transposon mutant formed less biofilm in vivo and was more susceptible to clearance by intravenous ciprofloxacin treatment as compared to the wild-type control. In conclusion, we have established an experimentally tractable model that may serve to identify novel bacterial and host factors important for in vivo biofilm formation and to re-evaluate bactericidal and anti-biofilm effects of currently used and novel antibacterial compounds.  相似文献   

10.
Biofilms are oft cited as a factor in the unwanted persistence and recalcitrance of microbial life and a strong research initiative exists to identify, understand, and target vulnerabilities. Phytoglycogen is a biodegradable nanoparticulate biomaterial that is purified from crop plants. Importantly, the highly branched glucan structure provides a scaffold on which to construct novel polymers. Functionalized phytoglycogen (FP) was synthesized using green chemistry principles. Screening of several molecules identified a form of quaternized phytoglycogen which reduced biofilm formation and accretion by Pseudomonas aeruginosa. Exposing P. aeruginosa to modified phytoglycogen and antibiotic in combination not only substantively reduced biofilms, but also prevented increased biofilm formation, a biological response to suboptimal antibiotic concentrations. Treatment of pregrown biofilms with sub-minimum inhibitory concentration antibiotic alone also led to increased proliferation, whereas FP-antibiotic combinations prevented or reduced the extent of this. Swimming, swarming and twitching motility, all critical for biofilm development, were negatively affected by FP. This work supports phytoglycogen as a promising foundational molecule for novel polymers, including those with anti-biofilm function. Critically, in addition to published reports on how suboptimal antibiotic concentrations promote biofilm formation, we demonstrated a similar effect upon pre-existing biofilms, indicating a further route for the failure of antibiotic therapies.  相似文献   

11.
Bacterial biofilms are highly resistant to antibiotics and pose a great threat to human and animal health. The control and removal of bacterial biofilms have become an important topic in the field of bacterial infectious diseases. Nanocarriers show great anti-biofilm potential because of their small particle size and strong permeability. In this review, the advantages of nanocarriers for combating biofilms are analysed. Nanocarriers can act on all stages of bacterial biofilm formation and diffusion. They can improve the scavenging effect of biofilm by targeting biofilm, destroying extracellular polymeric substances and enhancing the biofilm permeability of antimicrobial substances. Nanocarriers can also improve the antibacterial ability of antimicrobial drugs against bacteria in biofilm by protecting the loaded drugs and controlling the release of antimicrobial substances. Additionally, we emphasize the challenges faced in using nanocarrier formulations and translating them from a preclinical level to a clinical setting.  相似文献   

12.
Dental diseases are among the most prevalent afflictions of humankind. These diseases are associated with the formation of biofilms harboring pathogenic bacteria. Fructosyltransferases (FTF) are extra cellular enzymes of several oral bacteria. FTF are associated with the formation of extracellular polysaccharide matrix (fructans) which play a role in biofilm formation and oral bacteria physiology. Oxazaborolidines have been shown to inhibit biofilm formation. The purpose of this study was to examine if the anti-biofilm effect is, in part, an effect on the immobilized enzymes synthesizing the extra cellular polysaccharide participating in biofilm formation. Eight different oxazaborolidines (BNO1-BNO8) were synthesized and evaluated for their affect on the synthesis of fructans by FTF using the biomolecular interaction analysis (BIAcore) system which involves the use of real-time surface plasmon resonance (SPR) technique. The tested oxazaborolidines demonstrated a significant and immediate inhibitory effect on immobilized FTF activity. This effect was reversible. Our results show that oxazaborolidines can act as enzymatic inhibitors of FTF immobilized on the surface, also at levels lower than their MIC. Part of the anti-biofilm effect of BNOs may be accounted for this enzymatic inhibition.  相似文献   

13.
In this work, the uronic acids assay was evaluated for its potential to function as a bioassay to screen for antagonistic activity against the production of microbial biofilm exopolysaccharide (EPS). The assay was first applied to biofilms produced in the presence of two universal disinfectants (sodium hypochlorite and sodium dodecyl sulfate) known to inhibit microbial growth and biofilm formation. The performance of the assay was then characterized through statistical assessment of threshold concentrations for disinfection efficiency and consistency relative to values reported in the literature. The assay was then evaluated for its utility in screening for enzymatic or chemical inhibitors of biofilm formation (eg glycosidases, halogenated furanones, and semi-crude fractions extracted from minimally fouled marine plants) and its ability to distinguish between true anti-biofilm activity and simple disinfection. Activity was characterized as (i) no effect, (ii) a true positive effect (ie increased biofilm EPS), (iii) anti-bacterial activity (ie decreased biofilm EPS and analogous decrease in planktonic growth), and (iv) anti-biofilm EPS activity (ie decreased biofilm EPS, without analogous decrease in planktonic growth). Results demonstrate that the uronic acids assay can augment existing biofilm characterization methods by providing a quantitative measure of biofilm EPS.  相似文献   

14.
Microbial biofilms are mainly studied due to detrimental effects on human health but they are also well established in industrial biotechnology for the production of chemicals. Moreover, biofilm can be considered as a source of novel drugs since the conditions prevailing within biofilm can allow the production of specific metabolites. Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 when grown in biofilm condition produces an anti-biofilm molecule able to inhibit the biofilm of the opportunistic pathogen Staphylococcus epidermidis. In this paper we set up a P. haloplanktis TAC125 biofilm cultivation methodology in automatic bioreactor. The biofilm cultivation was designated to obtain two goals: (1) the scale up of cell-free supernatant production in an amount necessary for the anti-biofilm molecule/s purification; (2) the recovery of P. haloplanktis TAC125 cells grown in biofilm for physiological studies. We set up a fluidized-bed reactor fermentation in which floating polystyrene supports were homogeneously mixed, exposing an optimal air–liquid interface to let bacterium biofilm formation. The proposed methodology allowed a large-scale production of anti-biofilm molecule and paved the way to study differences between P. haloplanktis TAC125 cells grown in biofilm and in planktonic conditions. In particular, the modifications occurring in the lipopolysaccharide of cells grown in biofilm were investigated.  相似文献   

15.
In order to discover novel probes that may help in the investigation and the control of bacterial biofilms, we have designed a library of triazole-based analogs of 2-aminoimidazole marine alkaloids: naamine A and isonaamine A. Twenty-two compounds were screened for their biofilm inhibitory activity against two strains of Gram-negative bacteria. Four compounds were shown to act as non-toxic inhibitors of biofilm development without effect on bacterial growth even at high concentrations (100 μM).  相似文献   

16.
Staphylococcus epidermidis plays a major role in biofilm-related medical device infections. Herein the anti-biofilm activity of the human liver-derived antimicrobial peptide hepcidin 20 (hep20) was evaluated against polysaccharide intercellular adhesin (PIA)-positive and PIA-negative clinical isolates of S. epidermidis. Hep20 markedly inhibited biofilm formation and bacterial cell metabolism of PIA-positive and PIA-negative strains, but the decrease in biofilm biomass only partially correlated with a decrease in viable bacteria. Confocal microscope images revealed that, in the presence of hep20, both PIA-positive and PIA-negative strains formed biofilms with altered architectures and reduced amounts of extracellular matrix. Co-incubation of hep20 with vancomycin produced no synergistic effect, evaluated as number of viable cells, both in preventing biofilm formation and in treating preformed biofilms. In contrast, biofilms obtained in the presence of hep20, and then exposed to vancomycin, displayed an increased susceptibility to vancomycin. These results suggest that hep20 may inhibit the production/accumulation of biofilm extracellular matrix.  相似文献   

17.
Staphylococcus aureus is now amongst the most important pathogenic bacteria responsible for bloodstream nosocomial infections and for biofilm formation on indwelling medical devices. Its increasing resistance to common antibiotics, partly attributed to its ability to form biofilms, is a challenge for the development of new antimicrobial agents. Accordingly, the goal of this study was to evaluate the effect of a coral associated actinomycete (CAA) - 3 on S. aureus biofilms both in vitro and in vivo. Methanolic extracts of CAA-3 showed a reduction in in vitro biofilm formation by S. aureus ATCC 11632, methicillin resistant S. aureus ATCC 33591 and clinical isolates of S. aureus at the biofilm inhibitory concentration (BIC) of 0.1 mg ml?1. Furthermore, confocal laser scanning microscope (CLSM) studies provide evidence of CAA-3 inhibiting intestinal colonisation of S. aureus in the nematode Caenorhabditis elegans. To conclude, this study for the first time, reports CAA as a promising source of anti-biofilm compounds, for developing novel drugs against highly resistant staphylococcal biofilms.  相似文献   

18.
In Gram-negative bacteria, production of bis-(3′,5′)-cyclic diguanylic acid (c-di-GMP) by diguanylate cyclases (DGCs) is the main trigger for production of extracellular polysaccharides and for biofilm formation. Mutants affected in c-di-GMP biosynthesis are impaired in biofilm formation, thus making DGCs interesting targets for new antimicrobial agents with anti-biofilm activity. In this report, we describe a strategy for the screening for DGC inhibitors consisting of a combination of three microbiological assays. The primary assay utilizes an Escherichia coli strain overexpressing the adrA gene, encoding the DGC protein AdrA, and relies on detection of AdrA-dependent cellulose production as red colony phenotype on solid medium supplemented with the dye Congo red (CR). Presence of DGC inhibitors blocking AdrA activity would result in a white phenotype on CR medium. The CR assay can be performed in 96-well microtiter plates, making it suitable for high-throughput screenings. To confirm specific inhibition of c-di-GMP biosynthesis, chemical compounds positive in the CR assay are tested for their ability to inhibit biofilm formation and in a reporter gene assay which monitors expression of curli-encoding genes as a function of DGC activity. Screening of a chemical library using the described approach allowed us to identify sulfathiazole, an antimetabolite drug, as an inhibitor of c-di-GMP biosynthesis. Sulfathiazole probably affects c-di-GMP biosynthesis in an indirect fashion rather than by binding to DGCs; however, sulfathiazole represents the first example of drug able to affect biofilm formation by interfering with c-di-GMP metabolism.  相似文献   

19.
Caries is caused by acid production in biofilms on dental surfaces. Preventing caries therefore involves control of microorganisms and/or the acid produced. Here, calcium-phosphate-osteopontin particles are presented as a new approach to caries control. The particles are made by co-precipitation and designed to bind to bacteria in biofilms, impede biofilm build-up without killing the microflora, and release phosphate ions to buffer bacterial acid production if the pH decreases below 6. Analysis of biofilm formation and pH in a five-species biofilm model for dental caries showed that treatment with particles or pure osteopontin led to less biofilm formation compared to untreated controls or biofilms treated with osteopontin-free particles. The anti-biofilm effect can thus be ascribed to osteopontin. The particles also led to a slower acidification of the biofilm after exposure to glucose, and the pH always remained above 5.5. Hence, calcium-phosphate-osteopontin particles show potential for applications in caries control.  相似文献   

20.
Biofilm formation is one of the main causes for the persistence of Acinetobacter baumannii, a pathogen associated with severe infections and outbreaks in hospitals. Here, we performed comparative proteomic analyses (2D-DIGE and MALDI-TOF/TOF and iTRAQ/SCX-LC-MS/MS) of cells at three different conditions: exponential, late stationary phase, and biofilms. These results were compared with alterations in the proteome resulting from exposure to a biofilm inhibitory compound (salicylate). Using this multiple-approach strategy, proteomic patterns showed a unique lifestyle for A. baumannii biofilms and novel associated proteins. Several cell surface proteins (such as CarO, OmpA, OprD-like, DcaP-like, PstS, LysM, and Omp33), as well as those involved in histidine metabolism (like Urocanase), were found to be implicated in biofilm formation, this being confirmed by gene disruption. Although l-His uptake triggered biofilms efficiently in wild-type A. baumannii, no effect was observed in Urocanase and OmpA mutants, while a slight increase was observed in a CarO deficient strain. We conclude that Urocanase plays a crucial role in histidine metabolism leading to biofilm formation and that OmpA and CarO can act as channels for L-His uptake. Finally, we propose a model in which novel proteins are suggested for the first time as targets for preventing the formation of A. baumannii biofilms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号