首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comparative landscape genetics has uncovered high levels of variability in which landscape factors affect connectivity among species and regions. However, the relative importance of species traits versus environmental variation for predicting landscape patterns of connectivity is unresolved. We provide evidence from a landscape genetics study of two sister taxa of frogs, the Oregon spotted frog (Rana pretiosa) and the Columbia spotted frog (Rana luteiventris) in Oregon and Idaho, USA. Rana pretiosa is relatively more dependent on moisture for dispersal than R. luteiventris, so if species traits influence connectivity, we predicted that connectivity among R. pretiosa populations would be more positively associated with moisture than R. luteiventris. However, if environmental differences are important drivers of gene flow, we predicted that connectivity would be more positively related to moisture in arid regions. We tested these predictions using eight microsatellite loci and gravity models in two R. pretiosa regions and four R. luteiventris regions (= 1,168 frogs). In R. pretiosa, but not R. luteiventris, connectivity was positively related to mean annual precipitation, supporting our first prediction. In contrast, connectivity was not more positively related to moisture in more arid regions. Various temperature metrics were important predictors for both species and in all regions, but the directionality of their effects varied. Therefore, the pattern of variation in drivers of connectivity was consistent with predictions based on species traits rather than on environmental variation.  相似文献   

2.
The western North American complex of spotted frogs (Rana pretiosa) exhibits isolation-by-distance, genetic subdivision, and speciation in association with its extensive northward range shift in postglacial times. The southern relict populations of R. pretiosa species B existing at high altitudes or in desert springs have been subjected to restricted gene flow, high inbreeding, and bottlenecks to produce significant between-population genetic diversity. The more recently established northern populations, however, show genetic uniformity and isolation-by-distance, as estimated using Slatkin's (1993) statistic M?. Middle latitude populations have higher heterozygosities than populations at either extreme. Fixed differences in allozyme variation separate 21 populations of species B from five populations of R. pretiosa species A found in southwest Washington State and the Cascades Mountains of Oregon. Morphological variation of 20 metric characters among 38 samples, examined using multiple discriminant function analysis, could partially resolve partitioning among populations but specimens from the vicinity of the type series of R. p. pretiosa could not be assigned to either species A or species B. Speciation in these frogs may not be correlated with morphological evolution since comparatively neutral allozyme changes may be established more rapidly than changes in morphology.  相似文献   

3.
Following glacial recession in southeast Alaska, waterfalls created by isostatic rebound have isolated numerous replicate populations of coastal cutthroat trout (Oncorhynchus clarkii clarkii) in short coastal streams. These replicate isolated populations offer an unusual opportunity to examine factors associated with the maintenance of genetic diversity. We used eight microsatellites to examine genetic variation within and differentiation among 12 population pairs sampled from above and below these natural migration barriers. Geological evidence indicated that the above-barrier populations have been isolated for 8,000–12,500 years. Genetic differentiation among below-barrier populations (F ST = 0.10, 95% C.I. 0.08–0.12) was similar to a previous study of more southern populations of this species. Above-barrier populations were highly differentiated from adjacent below-barrier populations (mean pairwise F ST = 0.28; SD 0.18) and multiple lines of evidence were consistent with asymmetric downstream gene flow that varied among streams. Each above-barrier population had reduced within-population genetic variation when compared to the adjacent below-barrier population. Within-population genetic diversity was significantly correlated with the amount of available habitat in above-barrier sites. Increased genetic differentiation of above-barrier populations with lower genetic diversity suggests that genetic drift has been the primary cause of genetic divergence. Long-term estimates of N e based on loss of heterozygosity over the time since isolation were large (3,170; range 1,077–7,606) and established an upper limit for N e if drift were the only evolutionary process responsible for loss of genetic diversity. However, it is likely that a combination of mutation, selection, and gene flow have also contributed to the genetic diversity of above-barrier populations. Contemporary above-barrier N e estimates were much smaller than long-term N e estimates, not correlated with within-population genetic diversity, and not consistent with the amount of genetic variation retained, given the approximate 10,000-year period of isolation. The populations isolated by waterfalls in this study that occur in larger stream networks have retained substantial genetic variation, which suggests that the amount of habitat in headwater streams is an important consideration for maintaining the evolutionary potential of isolated populations.  相似文献   

4.
Given the recent interest in declining amphibian populations, it is surprising that there are so few data on genetic drift and gene flow in anuran species. We used seven microsatellite loci to investigate genetic structure and diversity at both large and small geographic scales, and to estimate gene flow in the Cascades frog, Rana cascadae. We sampled 18 sites in a hierarchical design (inter-population distances ranging from 1–670 km) to test for isolation by distance and to determine the geographic scale over which substantial gene flow occurs. Eleven of these sites were sampled as three fine-scale clusters of three, three, and five sites separated by pairwise distances of 1–23 km to estimate number of migrants exchanged per generation via F ST and by a coalescent approach. We found R. cascadae exhibits a strong pattern of isolation by distance over the entire species range, and that there is a sharp drop in migrants exchanged between sites separated by greater than 10 km. These data, in conjunction with results of other recent studies, suggest that montane habitats promote unusually strong genetic isolation among frog populations. We discuss our results in light of future management and conservation of R. cascadae.  相似文献   

5.
Kincaid’s lupine (Lupinus oreganus), a threatened perennial legume of western Oregon grasslands, is composed of small, fragmented populations that have consistently low natural seed set, suggesting they may have accumulated high enough levels of genetic load to be candidates for genetic rescue. We used simple sequence repeat (SSR) loci, both nuclear DNA and chloroplast DNA, to screen populations throughout the species’ range for evidence of severe inbreeding and recent genetic bottlenecks due to habitat fragmentation. After genotyping about 40% of the known populations, only one of 24 populations had strong statistical evidence for a recent genetic bottleneck (H e > H eq). Both mean nSSR fixation coefficients and genetic diversity did not statistically differ between very small, small, medium, and large lupine population size classes. Within population chloroplast DNA haplotype number was high for an animal pollinated species, ≈4.2 haplotypes/population, and within population haplotype diversity was also relatively evenly distributed. Within population patterns of nSSR and cpSSR genetic diversity suggest that genetic diversity has not been lost over the last century of habitat fragmentation. With genet lifespan thought to exceed 100 years, overlap of several to many generations, and substantial reductions in seed set from inbreeding depression that shifts cohort composition towards those generated by outcrossing events, Kincaid’s lupine is likely maintain the currently high levels of within population genetic diversity. The case of Kincaid’s lupine provides an example of how the assumptions of severe inbreeding depression with small population size and habitat fragmentation can be inaccurate.  相似文献   

6.
Intraspecific trait variation (ITV), based on available genetic diversity, is one of the major means plant populations can respond to environmental variability. The study of functional trait variation and diversity has become popular in ecological research, for example, as a proxy for plant performance influencing fitness. Up to now, it is unclear which aspects of intraspecific functional trait variation (iFDCV) can be attributed to the environment or genetics under natural conditions. Here, we examined 260 individuals from 13 locations of the rare (semi‐)dry calcareous grassland species Trifolium montanum L. in terms of iFDCV, within‐habitat heterogeneity, and genetic diversity. The iFDCV was assessed by measuring functional traits (releasing height, biomass, leaf area, specific leaf area, leaf dry matter content, Fv/Fm, performance index, stomatal pore surface, and stomatal pore area index). Abiotic within‐habitat heterogeneity was derived from altitude, slope exposure, slope, leaf area index, soil depth, and further soil factors. Based on microsatellites, we calculated expected heterozygosity (He) because it best‐explained, among other indices, iFDCV. We performed multiple linear regression models quantifying relationships among iFDCV, abiotic within‐habitat heterogeneity and genetic diversity, and also between separate functional traits and abiotic within‐habitat heterogeneity or genetic diversity. We found that abiotic within‐habitat heterogeneity influenced iFDCV twice as strong compared to genetic diversity. Both aspects together explained 77% of variation in iFDCV ( = .77, F2, 10 = 21.66, p < .001). The majority of functional traits (releasing height, biomass, specific leaf area, leaf dry matter content, Fv/Fm, and performance index) were related to abiotic habitat conditions indicating responses to environmental heterogeneity. In contrast, only morphology‐related functional traits (releasing height, biomass, and leaf area) were related to genetics. Our results suggest that both within‐habitat heterogeneity and genetic diversity affect iFDCV and are thus crucial to consider when aiming to understand or predict changes of plant species performance under changing environmental conditions.  相似文献   

7.
Forest fragmentation may negatively affect plants through reduced genetic diversity and increased population structure due to habitat isolation, decreased population size, and disturbance of pollen‐seed dispersal mechanisms. However, in the case of tree species, effective pollen‐seed dispersal, mating system, and ecological dynamics may help the species overcome the negative effect of forest fragmentation. A fine‐scale population genetics study can shed light on the postfragmentation genetic diversity and structure of a species. Here, we present the genetic diversity and population structure of Cercis canadensis L. (eastern redbud) wild populations on a fine scale within fragmented areas centered around the borders of Georgia–Tennessee, USA. We hypothesized high genetic diversity among the collections of C. canadensis distributed across smaller geographical ranges. Fifteen microsatellite loci were used to genotype 172 individuals from 18 unmanaged and naturally occurring collection sites. Our results indicated presence of population structure, overall high genetic diversity (HE = 0.63, HO = 0.34), and moderate genetic differentiation (FST = 0.14) among the collection sites. Two major genetic clusters within the smaller geographical distribution were revealed by STRUCTURE. Our data suggest that native C. canadensis populations in the fragmented area around the Georgia–Tennessee border were able to maintain high levels of genetic diversity, despite the presence of considerable spatial genetic structure. As habitat isolation may negatively affect gene flow of outcrossing species across time, consequences of habitat fragmentation should be regularly monitored for this and other forest species. This study also has important implications for habitat management efforts and future breeding programs.  相似文献   

8.
The pathogen Batrachochytrium dendrobatidis (Bd) has been associated with amphibian declines in multiple continents, including western North America. We investigated Bd prevalence in Oregon spotted frog (Rana pretiosa), a species that has declined across its range in the Pacific Northwest. Polymerase chain reaction analysis of skin swabs indicated that Bd was prevalent within populations (420 of 617 juvenile and adults) and widespread among populations (36 of 36 sites) where we sampled R. pretiosa in Oregon and Washington. We rarely detected Bd in R. pretiosa larvae (2 of 72). Prevalence of Bd in postmetamorphic R. pretiosa was inversely related to frog size. We found support for an interactive effect of elevation and sampling date on Bd: prevalence of Bd generally increased with date, but this effect was more pronounced at lower elevations. We also found evidence that the body condition of juvenile R. pretiosa with Bd decreased after their first winter. Our data indicate that some Oregon spotted frog populations are currently persisting with relatively high Bd prevalence, but the risk posed by Bd is unknown.  相似文献   

9.
1. The introduction of trout to montane lakes has negatively affected amphibian populations across the western United States. In northern California’s Klamath–Siskiyou Mountains, introduced trout have diminished the distribution and abundance of a native ranid frog, Rana (=Lithobates) cascadae. This is primarily thought to be the result of predation on frog larvae. However, if trout feed on larval aquatic insects that are available to R. cascadae only after emergence, then resource competition may also affect this declining native amphibian. 2. Stomach contents of R. cascadae were compared between lakes that contained trout and those from which introduced trout were removed. Total prey mass in stomach contents relative to frog body mass was not significantly different between lakes with fish and fish‐removal lakes, but in the former R. cascadae consumed a smaller proportion of adult aquatic insects. The stomach contents of fish included larvae of aquatic insects that are, as adults, eaten by R. cascadae. 3. Rana cascadae consumed fewer caddisflies (Trichoptera) and more grasshoppers (Orthoptera) at lakes with higher densities of fish. At lakes with greater aquatic habitat complexity, R. cascadae consumed more water striders (Hemiptera: Gerridae) and terrestrial spiders (Araneae). 4. We suggest that reductions in the availability of emerging aquatic insects cause R. cascadae to consume more terrestrial prey where trout are present. Thus, introduced trout may influence native amphibians directly through predation and, indirectly, through pre‐emptive resource competition.  相似文献   

10.
Plant species in fragmented populations are affected by landscape structure because persistence within and migration among inhabited patches may be influenced by the identity and configuration of surrounding habitat elements. This may also be true for species of the semi-natural vegetation in agricultural landscapes. To determine the effect of landscape elements we analyzed Wood Avens (Geum urbanum L.) populations within three 4×4 km2 agricultural landscapes in Germany, Switzerland and Estonia, which differ in levels of land use intensity and habitat fragmentation. Genetic variation was determined in 15 randomly selected populations in each landscape using 10 microsatellite loci. The landscape structure was assessed at two circles around each population, with radii defined by the range limits of spatial genetic autocorrelation. Multiple regression analysis was used to determine the influence of landscape structure variables for inter- and intrapopulation genetic diversity. Gene diversity was equally high in Germany (He=0.27) and Switzerland (He=0.26) but lower in Estonia (He=0.16). A high overall inbreeding coefficient (FIS=0.89) was found, as expected for a selfing breeding system in G. urbanum. Genetic differentiation among populations was high (overall FST=0.43, 0.48, and 0.45 in Estonia, Switzerland and Germany, respectively), and did not differ among the three landscapes. Only a moderate influence of individual land use types on genetic diversity within and among populations was found with some idiosyncratic relationships. Genetic variation within populations was correlated to the amount of hedgerows positively in Estonia but negatively in Switzerland. The study demonstrates that the distribution of individual land use types affects the genetic pattern of a common plant species. However, different variables were identified to influence the genetic structure in three different landscapes. This indicates a major influence of landscape-specific land use history and stochastic processes determining gene flow and plant population structure.  相似文献   

11.
Indochina is a biodiversity hot spot and harbors a high number of endemic species, most of which are poorly studied. This study explores the genetic structure and reproductive system of the threatened endemic timber species Dalbergia cochinchinensis and Dalbergia oliveri using microsatellite data from populations across Indochina and relates it to landscape characteristics and life‐history traits. We found that the major water bodies in the region, Mekong and Tonle Sap, represented barriers to gene flow and that higher levels of genetic diversity were found in populations in the center of the distribution area, particularly in Cambodia. We suggest that this pattern is ancient, reflecting the demographic history of the species and possible location of refugia during earlier time periods with limited forest cover, which was supported by signs of old genetic bottlenecks. The D. oliveri populations had generally high levels of genetic diversity (mean He = 0.73), but also strong genetic differentiation among populations (global GST = 0.13), while D. cochinchinensis had a moderate level of genetic diversity (mean He = 0.55), and an even stronger level of differentiation (global GST = 0.25). These differences in genetic structure can be accounted for by a higher level of gene flow in D. oliveri due to a higher dispersal capacity, but also by the broader distribution area for D. oliveri, and the pioneer characteristics of D. cochinchinensis. This study represents the first detailed analysis of landscape genetics for tree species in Indochina, and the found patterns might be common for other species with similar ecology.  相似文献   

12.
Genetic structure and major climate factors may contribute to the distribution of genetic diversity of a highly valued oil tree species Xanthoceras sorbifolium (yellowhorn). Long‐term over utilization along with climate change is affecting the viability of yellowhorn wild populations. To preserve the species known and unknown valuable gene pools, the identification of genetic diversity “hotspots” is a prerequisite for their consideration as in situ conservation high priority. Chloroplast DNA (cpDNA) diversity was high among 38 natural populations (Hd = 0.717, K = 4.616, Tajmas’ D = ?0.22) and characterized by high genetic divergence (FST = 0.765) and relatively low gene flow (Nm = 0.03), indicating populations isolation reflecting the species’ habitat fragmentation and inbreeding depression. Six out of the studied 38 populations are defined as genetic diversity “hotspots.” The number and geographic direction of cpDNA mutation steps supported the species southwest to northeast migration history. Climatic factors such as extreme minimum temperature over 30 years indicated that the identified genetic “hotspots” are expected to experience 5°C temperature increase in next following 50 years. The results identified vulnerable genetic diversity “hotspots” and provided fundamental information for the species’ future conservation and breeding activities under the anticipated climate change. More specifically, the role of breeding as a component of a gene resource management strategy aimed at fulfilling both utilization and conservation goals.  相似文献   

13.
Delphinium staphisagria is an endemic annual or biennial herb from the Mediterranean Basin, widely distributed in isolated populations of variable size. We evaluated the allozyme diversity of 31 populations along its distribution range via starch gel electrophoresis, assaying 12 enzyme systems and scoring 17 loci. The low levels of genetic variability detected (A = 11.8, A p = 1.6, H o = 0.026, H e = 0.057), are discussed in relation to the life-history traits of the species, such as short life-span, selfing or gravity seed dispersion. Other factors influencing genetic diversity, such as evolutionary history and spreading are also considered. Due to its historical medicinal uses, this plant has probably become widespread in the Mediterranean area. Human-mediated distribution could have promoted few migrant genotypes, recent founder events and long distance dispersal. These events would explain the genetic homogeneity found within and among populations, as well as the absence of a clear biogeographic structure. The limited genetic variability, the high genetic similarity among populations and the dysploidy of this species make it worthy of conservation. Management strategies are proposed mainly to preserve its genetic pool.  相似文献   

14.
Population fragmentation is often correlated with loss of genetic diversity and reduced fitness. Obligate out-crossing (dioecy) is expected to enhance genetic diversity, reduce genetic differentiation, and avoid inbreeding depression through frequent gene flow. However, in highly fragmented populations dioecy has only diminishing effects upon genetic structure as pollination limitations (e.g. flight distance of pollinators) most often restrict inter-population gene flow in insect pollinated species. In fragmented dry grasslands in northeastern Germany, we analysed genetic structure, fitness, and habitat quality of the endangered dioecious Silene otites (Caryophyllaceae). Using AFLP markers, a high level of differentiation among ten populations was found (F st = 0.36), while the intra-population genetic diversities (H E = 0.165–0.240) were similar as compared to hermaphroditic species. There was neither a correlation between geographic and genetic distance nor between genetic diversity and population size, which indicates reduced gene flow among populations and random genetic drift. Plant size was positively correlated with genetic diversity. Seed set and number of juveniles were positively related to population size. Higher total coverage resulted in reduced plant fitness, and the number of juveniles was negatively correlated to cryptogam cover. Additionally, we found a sex ratio bias towards more male plants in larger populations. Overall, our results indicate that on a regional geographic scale dioecy does not necessarily prevent genetic erosion in the case of habitat fragmentation, especially in the absence of long distance seed and pollen dispersal capacity.  相似文献   

15.
Recent decades have seen the emergence and spread of numerous infectious diseases, often with severe negative consequences for wildlife populations. Nevertheless, many populations survive the initial outbreaks, and even undergo recoveries. Unfortunately, the long‐term effects of these outbreaks on host population genetics are poorly understood; to increase this understanding, we examined the population genetics of two species of rainforest frogs (Litoria nannotis and Litoria serrata) that have largely recovered from a chytridiomycosis outbreak at two national parks in the Wet Tropics of northern Australia. At the wetter, northern park there was little evidence of decreased genetic diversity in either species, and all of the sampled sites had high minor allele frequencies (mean MAF = 0.230–0.235), high heterozygosity (0.318–0.325), and few monomorphic markers (1.4%–4.0%); however, some recovered L. nannotis populations had low Ne values (59.3–683.8) compared to populations that did not decline during the outbreak (1,537.4–1,756.5). At the drier, southern park, both species exhibited lower diversity (mean MAF = 0.084–0.180; heterozygosity = 0.126–0.257; monomorphic markers = 3.7%–43.5%; Ne = 18.4–676.1). The diversity patterns in this park matched habitat patterns, with both species having higher diversity levels and fewer closely related individuals at sites with higher quality habitat. These patterns were more pronounced for L. nannotis, which has lower dispersal rates than L. serrata. These results suggest that refugia with high quality habitat are important for retaining genetic diversity during disease outbreaks, and that gene flow following disease outbreaks is important for re‐establishing diversity in populations where it was reduced.  相似文献   

16.
Translocation and reintroduction are important tools for the conservation or recovery of species threatened with extinction in the wild. However, an understanding of the potential genetic consequences of mixing populations requires an understanding of the genetic variation within, and similarities among, donor and recipient populations. Genetic diversity was measured using two independent marker systems (microsatellites and AFLPs) for one island and four small remnant mainland populations of Setonix brachyurus, a threatened medium sized macropod restricted to fragmented habitat remnants and two off-shore islands in southwest Australia. Microsatellite diversity in the island population (R s = 3.2, H e = 71%) was similar to, or greater than, all mainland populations (R s = 2.1–3.9, H e = 34-71%). In contrast, AFLP diversity was significantly lower in the island population (PPL = 20.5; H j = 0.118) compared to all mainland populations (mean PPL = 79.5–89.7; mean H j = 0.23–0.29). Microsatellites differentiated all (mainland and island) populations from each other. However, AFLP only differentiated the island population from the mainland populations—all mainland populations were not significantly differentiated from each other for this marker. Given a known time since isolation of the island population from the mainland (6,000 years ago), and an overall more conservative rate of evolution of AFLP markers, our results are consistent with mainland populations fragmenting thousands of years ago (but <6,000 years), probably as a consequence of reduced rainfall and the constriction of the preferred mesic habitat of quokkas. Our results also support a recent history of severe population bottlenecks in mainland populations, and a long history of bottlenecks of the island population, but reflect a recent explosion in numbers since European occupation of the island. Our results indicate that translocation of island populations to supplement mainland populations would introduce genetically markedly differentiated, and possibly maladapted, individuals.  相似文献   

17.
Morphological, phytochemical and genetic differences were studied to evaluate the level and distribution of diversity in twelve populations of the Portuguese endangered medicinal plant Mentha cervina L. Morphological variation was correlated with ecological conditions at the site of origin. Pulegone was the major essential oils compound in all of the populations collected at full flowering (68–83%), in different growing conditions (51–82%), and for all the developmental stages studied (47–82%). Although clusters were defined, the analysis revealed a high chemical correlation among all populations (Scorr ≥ 0.95%). Inter-simple sequence repeats markers were used to assess the population structure and genetic variation. Populations exhibited a relatively low genetic diversity (PPB = 14.3–64.6%, He = 0.051–0.222, I = 0.076–0.332), with high structuring between them (GST = 0.51). However, the genetic diversity at species level was relatively high (PPB = 97.7%; He = 0.320). The levels and patterns of genetic diversity were assumed to result largely from a combination of evolutionary history and its unique biological traits, such as breeding system, clonal growth, low capacity of dispersion and habitat fragmentation. The relatively low genetic diversity in the populations analyzed indicates that the maintenance of their evolutionary potential is at risk if population sizes are maintained and if there is no protection of the habitats.  相似文献   

18.
The clam Ruditapes decussatus is commercially important in the south of Portugal. The random amplified polymorphic DNA (RAPD) technique was applied to assess the genetic diversity and population structure of two Portuguese populations occurring in the Ria Formosa (Faro) and the Ria de Alvor, respectively. Twenty-five individuals of each population were investigated by RAPD profiles. Genetic diversity within populations, measured by the percentage of polymorphic loci (%P), varied between 68.57% (Alvor) and 73.88% (Faro). Shannon’s information index (H) and Nei’s gene diversity (h) were 0.281 and 0.176, respectively, for the Alvor population and 0.356 and 0.234 for the Faro population. Overall, genetic variation within R. decussatus populations was high. The total genetic diversity (H T) was explained by a low variation between populations (G ST = 0.145), which is consistent with high gene flow (N m = 2.9). The analysis of molecular variance (AMOVA) showed that 65% of variability is within populations and 35% between populations (ΦPT = 0.345; P ≥ 0.001). The value of Nei’s genetic distance was 0.0881, showing a low degree of population genetic distance, despite the different geographic origin. This is the first study on the population genetics of R. decussatus by RAPD technique. The results may be useful for restocking programs and aquaculture.  相似文献   

19.
Many plant species have pollination and seed dispersal systems and evolutionary histories that have produced strong genetic structuring. These genetic patterns may be consistent with expectations following recent anthropogenic fragmentation, making it difficult to detect fragmentation effects if no prefragmentation genetic data are available. We used microsatellite markers to investigate whether severe habitat fragmentation may have affected the structure and diversity of populations of the endangered Australian bird‐pollinated shrub Grevillea caleyi R.Br., by comparing current patterns of genetic structure and diversity with those of the closely related G. longifolia R.Br. that has a similar life history but has not experienced anthropogenic fragmentation. Grevillea caleyi and G. longifolia showed similar and substantial population subdivision at all spatial levels (global F′ST = 0.615 and 0.454; Sp = 0.039 and 0.066), marked isolation by distance and large heterozygous deficiencies. These characteristics suggest long‐term effects of inbreeding in self‐compatible species that have poor seed dispersal, limited connectivity via pollen flow and undergo population bottlenecks because of periodic fires. Highly structured allele size distributions, most notably in G. caleyi, imply historical processes of drift and mutation were important in isolated subpopulations. Genetic diversity did not vary with population size but was lower in more isolated populations for both species. Through this comparison, we reject the hypothesis that anthropogenic fragmentation has impacted substantially on the genetic composition or structure of G. caleyi populations. Our results suggest that highly self‐compatible species with limited dispersal may be relatively resilient to the genetic changes predicted to follow habitat fragmentation.  相似文献   

20.
The genetic diversity of bumblebees can be adversely affected by habitat degradation. An overabundance of deer has altered the composition and diversity of herbaceous plants in many places of the world, resulting in decreases of herbaceous flowers. Populations of Bombus diversus may be strongly affected by this degradation of habitat in the Ashiu primary beech forest in Kyoto, Japan. To estimate the effects of deer browsing on B. diversus populations, we analyzed and compared the genetic diversity of the extant population in Ashiu to museum specimens collected prior to heavy deer browsing in Ashiu (1980s) and the extant population in Hyonosen primary beech forest in Tottori, Japan, which has not been as severely degraded by deer. We successfully amplified DNA from ~20-year-old museum specimens and determined the genetic diversity of B. diversus in Ashiu populations from the 1980s. Results were analyzed for indications of a bottleneck as well as estimates of N e, allelic richness, rare allelic richness, expected heterozygosity, and the effective number of alleles. Our findings did not reveal clear evidence of degradation in genetic diversity of the extant Ashiu population compared to the museum specimens or to the Hyonosen population. Thus, the Ashiu population of B. diversus appears to have maintained a level of genetic diversity during 20 years irrespective of habitat degradation and the levels have been similar to that of the Hyonosen population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号