首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
To evaluate the involvement of translation initiation factors eIF4E and eIFiso4E in Chilli veinai mottle virus (ChiVMV) infection in pepper, we conducted a genetic analysis using a segregating population derived from a cross between Capsicum annuum ‘Dempsey’ containing an eIF4E mutation (pvr1 2 ) and C. annuum ‘Perennial’ containing an eIFiso4E mutation (pvr6). C. annuum ‘Dempsey’ was susceptible and C. annuum ‘Perennial’ was resistant to ChiVMV. All F1 plants showed resistance, and F2 individuals segregated in a resistant-susceptible ratio of 166:21, indicating that many resistance loci were involved. Seventy-five F2 and 329 F3 plants of 17 families were genotyped with pvr1 2 and pvr6 allele-specific markers, and the genotype data were compared with observed resistance to viral infection. All plants containing homozygous genotypes of both pvr1 2 and pvr6 were resistant to ChiVMV, demonstrating that simultaneous mutations in eIF4E and eIFiso4E confer resistance to ChiVMV in pepper. Genotype analysis of F2 plants revealed that all plants containing homozygous genotypes of both pvr1 2 and pvr6 showed resistance to ChiVMV. In protein-protein interaction experiments, ChiVMV viral genome-linked protein (VPg) interacted with both eIF4E and eIFiso4E. Silencing of eIF4E and eIFiso4E in the VIGS experiment showed reduction in ChiVMV accumulation. These results demonstrated that ChiVMV can use both eIF4E and eIFiso4E for replication, making simultaneous mutations in eIF4E and eIFiso4E necessary to prevent ChiVMV infection in pepper. These authors contributed equally to this work.  相似文献   

3.
Eukaryotic initiation factor eIF4E plays a pivotal role in translation initiation. As a component of the ternary eIF4F complex, eIF4E interacts with the mRNA cap structure to facilitate recruitment of the 40S ribosomal subunit onto mRNA. Plants contain two distinct cap-binding proteins, eIF4E and eIFiso4E, that assemble into different eIF4F complexes. To study the functional roles of eIF4E and eIFiso4E in tobacco, we isolated two corresponding cDNAs, NteIF4E1 and NteIFiso4E1, and used these to deplete cap-binding protein levels in planta by antisense downregulation. Antibodies raised against recombinant NteIF4E1 detected three distinct cap-binding proteins in tobacco leaf extracts; NteIF4E and two isoforms of NteIFiso4E. The three cap-binding proteins were immuno-detected in all tissues analysed and were coordinately regulated, with peak expression in anthers and pollen. Transgenic tobacco plants showing significant depletion of either NteIF4E or the two NteIFiso4E isoforms displayed normal vegetative development and were fully fertile. Interestingly, NteIFiso4E depletion resulted in a compensatory increase in NteIF4E levels, whereas the down-regulation of NteIF4E did not trigger a reciprocal increase in NteIFiso4E levels. The antisense depletion of both NteIF4E and NteIFiso4E resulted in plants with a semi-dwarf phenotype and an overall reduction in polyribosome loading, demonstrating that both eIF4E and eIFiso4E support translation initiation in planta, which suggests their potential role in the regulation of plant growth.  相似文献   

4.
The 5'-leader of tobacco etch virus (TEV) genomic RNA directs the efficient translation from the naturally uncapped viral RNA. The TEV 143-nt 5'-leader folds into a structure that contains two domains, each of which contains RNA pseudoknots. The 5'-proximal pseudoknot 1 (PK1) is necessary to promote cap-independent translation (Zeenko, V., and Gallie, D. R. (2005) J. Biol. Chem. 280, 26813-26824). During the translation initiation of cellular mRNAs, eIF4G functions as an adapter that recruits many of the factors involved in stimulating 40 S ribosomal subunit binding to an mRNA. Two related but highly distinct eIF4G proteins are expressed in plants, animals, and yeast. The two plant eIF4G isoforms, referred to as eIF4G and eIFiso4G, differ in size (165 and 86 kDa, respectively) and their functional differences are still unclear. Although eIF4G is required for the translation of TEV mRNA, it is not known if eIF4G binds directly to the TEV RNA itself or if other factors are required. To determine whether binding affinity and isoform preference correlates with translational efficiency, fluorescence spectroscopy was used to measure the binding of eIF4G, eIFiso4G, and their complexes (eIF4F and eIFiso4F, respectively) to the TEV 143-nt 5'-leader (TEV1-143) and a shorter RNA that contained PK1. A mutant (i.e. S1-3) in which the stem of PK1 was disrupted resulting in impaired cap-independent translation, was also tested. These studies demonstrate that eIF4G binds TEV1-143 and PK1 RNA with approximately 22-30-fold stronger affinity than eIFiso4G. eIF4G and eIF4F bind TEV1-143 with similar affinity, whereas eIFiso4F binds with approximately 6-fold higher affinity than eIFiso4G. The binding affinity of eIF4G, eIF4F, and eIFiso4G to S1-3 was reduced by 3-5-fold, consistent with the reduction in the ability of this mutant to promote cap-independent translation. Temperature-dependent binding studies revealed that binding of the TEV 5'-leader to these initiation factors has a large entropic contribution. Overall, these results demonstrate the first direct interaction of eIF4G with the TEV 5'-leader in the absence of other initiation factors. These data correlate well with the observed translational data and provide more detailed information on the translational strategy of potyviruses.  相似文献   

5.
The homozygous T-DNA mutant of the PP2CA2 gene in Arabidopsis thaliana was identified at DNA and RNA levels. The semi-quantitative RT-PCR analysis showed expression of PP2CA2 was induced by NaCl and ABA. When grown in presence of increasing concentration of exogenous ABA the pp2ca2 mutant showed a significant loss of ABA sensitivity in terms of seed germination, efficiency of post-germination growth and root growth. In presence of all ABA and NaCl concentrations tested the germination percentage of wild-type seeds was lower than that of mutant ppca2 seeds. Furthermore, in the presence of exogenous ABA, the pp2ca2 seeds showed higher germination percentages than wild-type at different stages of development and the pp2ca2 seedlings showed a reduced inhibition of root growth compared with wild-type plants. The above results indicated that the pp2ca2 was an ABA-hyposensitive mutant.  相似文献   

6.
The interaction between VPg of turnip mosaic virus and wheat germ eukaryotic translation initiation factors eIFiso4E and eIFiso4F (the complex of eIFiso4E and eIFiso4G) were measured and compared. The fluorescence quenching data showed the presence of one binding site on eIFiso4E for VPg. Scatchard analysis revealed the binding affinity (K(a)) and average binding sites (n) for VPg were (8.51 +/- 0.21) x 10(6) M(-1) and 1.0, respectively. The addition of eIFiso4G to the eIFiso4E increased the binding affinity 1.5-fold for VPg as compared with eIFiso4E alone. However, eIFiso4G alone did not bind with VPg. The van't Hoff analyses showed that VPg binding is enthalpy-driven and entropy-favorable with a large negative DeltaH degrees (-29.32 +/- 0.13 kJmol(-1)) and positive DeltaS degrees (36.88 +/- 0.25 Jmol(-1)K(-1)). A Lineweaver-Burk plot indicates mixed-type competitive ligand binding between VPg and anthraniloyl-7-methylguanosine triphosphate for eIFiso4E. Fluorescence stopped-flow studies of eIFiso4E and eIFiso4F with VPg show rapid binding, suggesting kinetic competition between VPg and m(7)G cap. The VPg protein binds much faster than cap analogs. The activation energies for binding of eIFiso4E and eIFiso4F with VPg were 50.70 +/- 1.27 and 75.37 +/- 2.95 kJmol(-1) respectively. Enhancement of eIFiso4F-VPg binding with the addition of a structured RNA derived from tobacco etch virus suggests that translation initiation involving VPg occurs at internal ribosomal entry sites. Furthermore, the formation of a protein-RNA complex containing VPg suggests the possibility of direct participation of VPg in the translation of the viral genome.  相似文献   

7.
Soybean oleic acid content is one of the important indexes to evaluate the quality of soybean oil. In the synthesis pathway of soybean fatty acids, the FAD2 gene family is the key gene that regulates the production of linoleic acid from soybean oleic acid. In this study, CRISPR/Cas9 gene editing technology was used to regulate FAD2 gene expression. Firstly, the CRISPR/Cas9 single knockout vectors GmFAD2-1B and GmFAD2-2C and double knockout vectors GmFAD2-2A-3 were constructed. Then, the three vectors were transferred into the recipient soybean variety Jinong 38 by Agrobacterium-mediated cotyledon node transformation, and the mutant plants were obtained. Functional analysis and comparison of the mutant plants of the T2 and T3 generations were carried out. The results showed that there was no significant difference in agronomic traits between the CRISPR/Cas9 single and double knockout vectors and the untransformed CRISPR/Cas9 receptor varieties. The oleic acid content of the plants that knocked out the CRISPR/Cas9 double gene vector was significantly higher than that of the single gene vector.  相似文献   

8.
The poly(A)-binding protein (PABP), a protein that contains four conserved RNA recognition motifs (RRM1-4) and a C-terminal domain, is expressed throughout the eukaryotic kingdom and promotes translation through physical and functional interactions with eukaryotic initiation factor (eIF) 4G and eIF4B. Two highly divergent isoforms of eIF4G, known as eIF4G and eIFiso4G, are expressed in plants. As little is known about how PABP can interact with RNA and three distinct translation initiation factors in plants, the RNA binding specificity and organization of the protein interaction domains in wheat PABP was investigated. Wheat PABP differs from animal PABP in that its RRM1 does not bind RNA as an individual domain and that RRM 2, 3, and 4 exhibit different RNA binding specificities to non-poly(A) sequences. The PABP interaction domains for eIF4G and eIFiso4G were distinct despite the functional similarity between the eIF4G proteins. A single interaction domain for eIF4G is present in the RRM1 of PABP, whereas eIFiso4G interacts at two sites, i.e. one within RRM1-2 and the second within RRM3-4. The eIFiso4G binding site in RRM1-2 mapped to a 36-amino acid region encompassing the C-terminal end of RRM1, the linker region, and the N-terminal end of RRM2, whereas the second site in RRM3-4 was more complex. A single interaction domain for eIF4B is present within a 32-amino acid region representing the C-terminal end of RRM1 of PABP that overlaps with the N-proximal eIFiso4G interaction domain. eIF4B and eIFiso4G exhibited competitive binding to PABP, supporting the overlapping nature of their interaction domains. These results support the notion that eIF4G, eIFiso4G, and eIF4B interact with distinct molecules of PABP to increase the stability of the interaction between the termini of an mRNA.  相似文献   

9.
Phytocystatins are cysteine proteinase inhibitors in plants that are implicated in the endogenous regulation of protein turnover and defense mechanisms against insects and pathogens. A cDNA encoding a phytocystatin called AtCYS6 (Arabidopsis thaliana phytocystatin6) has been isolated. We show that AtCYS6 is highly expressed in dry seeds and seedlings and that it also accumulates in flowers. The persistence of AtCYS6 protein expression in seedlings was promoted by abscisic acid (ABA), a seed germination and post-germination inhibitory phytohormone. This finding was made in transgenic plants bearing an AtCYS6 promoter–β-glucuronidase (GUS) reporter construct, where we found that expression from the AtCYS6 promoter persisted after ABA treatment but was reduced under control conditions and by gibberellin4+7 (GA4+7) treatment during the germination and post-germinative periods. In addition, constitutive over-expression of AtCYS6 retarded germination and seedling growth, whereas these were enhanced in an AtCYS6 knock-out mutant (cys6-2). Additionally, cysteine proteinase activities stored in seeds were inhibited by AtCYS6 in transgenic Arabidopsis. From these data, we propose that AtCYS6 expression is enhanced by the germination inhibitory phytohormone ABA and that it participates in the control of germination rate and seedling growth by inhibiting the activity of stored cysteine proteinases.  相似文献   

10.
11.
12.
13.
14.
Pollen formation and pollen tube growth are essential for the delivery of male gametes into the female embryo sac for double fertilization. Little is known about the mechanisms that regulate the late developmental process of pollen formation and pollen germination. In this study, we characterized a group of Arabidopsis AGC kinase proteins, NDR2/4/5, involved in pollen development and pollen germination. The NDR2/4/5 genes are mainly expressed in pollen grains at the late developmental stages and in pollen tubes. They function redundantly in pollen formation and pollen germination. At the tricellular stages, the ndr2 ndr4 ndr5 mutant pollen grains exhibit an abnormal accumulation of callose, precocious germination and burst in anthers, leading to a drastic reduction in fertilization and a reduced seed set. NDR2/4/5 proteins can interact with another group of proteins (MOB1A/1B) homologous to the MOB proteins from the Hippo signaling pathway in yeast and animals. The Arabidopsis mob1a mob1b mutant pollen grains also have a phenotype similar to that of ndr2 ndr4 ndr5 pollen grains. These results provide new evidence demonstrating that the Hippo signaling components are conserved in plants and play important roles in sexual plant reproduction.  相似文献   

15.
16.
Khan MA  Goss DJ 《Biochemistry》2005,44(11):4510-4516
Previous kinetic binding studies of wheat germ protein synthesis eukaryotic translational initiation factor eIFiso4F and its subunit, eIFiso4E, with m(7)GTP and mRNA analogues indicated that binding occurred by a two-step process with the first step occurring at a rate close to the diffusion-controlled rate [Sha, M., Wang, Y., Xiang, T., van Heerden, A., Browning, K. S., and Goss, D. J. (1995) J. Biol. Chem. 270, 29904-29909]. The kinetic effects of eIF4B, PABP, and wheat germ eIFiso4F with two mRNA cap analogues and the temperature dependence of this reaction were measured and compared. The Arrhenius activation energies for binding of the two mRNA cap analogues, Ant-m(7)GTP and m(7)GpppG, were significantly different. Fluorescence stopped-flow studies of the eIFiso4F.eIF4B protein complex with two m(7)G cap analogues show a concentration-independent conformational change. The rate of this conformational change was approximately 2.4-fold faster for the eIFiso4F.eIF4B complex compared with our previous studies of eIFiso4F [Sha, M., Wang, Y., Xiang, T., van Heerden, A., Browning, K. S., and Goss, D. J. (1995) J. Biol. Chem. 270, 29904-29909]. The dissociation rates were 3.7- and 5.4-fold slower for eIFiso4F.Ant-m(7)GTP and eIFiso4F.m(7)GpppG, respectively, in the presence of eIF4B and PABP. These studies show that eIF4B and PABP enhance the interaction with the cap and probably are involved in protein-protein interactions as well. The temperature dependence of the cap binding reaction was markedly reduced in the presence of either eIF4B or PABP. However, when both eIF4B and PABP were present, not only was the energy barrier reduced but the binding rate was faster. Since cap binding is thought to be the rate-limiting step in protein synthesis, these two proteins may perform a critical function in regulation of the overall protein synthesis efficiency. This suggests that the presence of both proteins leads to a rapid, stable complex, which serves as a scaffold for further initiation complex formation.  相似文献   

17.
18.
Phosphate (Pi) transporters mediate acquisition and transportation of Pi within plants. Here, we investigated the functions of OsPht1;4 (OsPT4), one of the 13 members of the Pht1 family in rice. Quantitative real‐time RT‐PCR analysis revealed strong expression of OsPT4 in roots and embryos, and OsPT4 promoter analysis using reporter genes confirmed these findings. Analysis using rice protoplasts showed that OsPT4 localized to the plasma membrane. OsPT4 complemented a yeast mutant defective in Pi uptake, and also facilitated increased accumulation of Pi in Xenopus oocytes. Further, OsPT4 genetically modified (GM) rice lines were generated by knockout/knockdown or over‐expression of OsPT4. Pi concentrations in roots and shoots were significantly lower and higher in knockout/knockdown and over‐expressing plants, respectively, compared to wild‐type under various Pi regimes. 33Pi uptake translocation assays corroborated the altered acquisition and mobilization of Pi in OsPT4 GM plants. We also observed effects of altered expression levels of OsPT4 in GM plants on the concentration of Pi, the size of the embryo, and several attributes related to seed development. Overall, our results suggest that OsPT4 encodes a plasma membrane‐localized Pi transporter that facilitates acquisition and mobilization of Pi, and also plays an important role in development of the embryo in rice.  相似文献   

19.
Calmodulin (CAM) is an ubiquitous calcium binding protein whose function is to translate the signals, perceived as calcium concentration variations, into the appropriate cellular responses. In Arabidopsis thaliana there are 4 CAM isoforms which are highly similar, encoded by 7 genes, and one possible explanation proposed for the evolutionary conservation of the CAM gene family is that the different genes have acquired different functions so that they play possibly overlapping but non-identical roles. Here we report the characterization of the Arabidopsis mutant cam2-2, identified among the lines of the gene-trapping collection EXOTIC because of a distorted segregation of kanamycin resistance. Phenotypic analysis showed that in normal growth conditions cam2-2 plants were indistinguishable from the wild type while genetic analysis showed a reduced transmission of the cam2-2 allele through the male gametophyte and in vitro pollen germination revealed a reduced level of germination in comparison with the wild type. These results provide genetic evidence of the involvement of a CAM gene in pollen germination and support the theory of functional diversification of the CAM gene family.  相似文献   

20.
To identify salt tolerance determinants, we screened for double mutants from a T-DNA tagged sos3-1 mutant population in the Arabidopsis Col-0 gl1 background. The shs1-1 (sodium hypersensitive) sos3-1 mutant was isolated as more sensitive to NaCl than sos3-1 plants. TAIL-PCR revealed that the introduced T-DNA was located 62 bp upstream of the initiation codon of an adenylate translocator-like protein gene on chromosome IV. SHS1 mRNA did not accumulate in shs1-1 sos3-1 plants although it accumulated in shoots of both sos3-1 and the wild type plants, indicating that this gene is inactive in the mutant. Genetic co-linkage analysis revealed that the mutation causing the phenotype segregated as a recessive, single gene mutation. This mutant showed altered sensitive responses to salt as well as to cold stress. It also demonstrated sugar sensitive and ABA insensitive phenotypes including enhanced germination, reduced growth, altered leaf morphology, and necrosis on leaves at an early growth stage. Sensitivity of sos3-1 shs1-1 root growth to LiCl, KCl, and mannitol was not significantly different from growth of sos3-1 roots. Further, expression of 35S::SHS1 in sos3-1 shs1-1 plants complemented NaCl and sugar sensitivity and partially restored the leaf morphology. G. Inan and F. Goto contributed equally in this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号