首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several features that appear to differentiate the walking gaits of most primates from those of most other mammals (the prevalence of diagonal-sequence footfalls, high degrees of humeral protraction, and low forelimb vs. hindlimb peak vertical forces) are believed to have evolved in response to requirements of locomotion on thin arboreal supports by early primates that had developed clawless grasping hands and feet. This putative relationship between anatomy, behavior, and ecology is tested here by examining gait mechanics in the common marmoset (Callithrix jacchus), a primate that has sharp claws and reduced pedal grasping, and that spends much of its time clinging on large trunks. Kinematic and kinetic data were collected on three male Callithrix jacchus as they walked across a force platform attached to the ground or to raised horizontal poles. The vast majority of all walking gaits were lateral-sequence. For all steps, the humerus was retracted (<90 degrees relative to a horizontal axis) or held in a neutral (90 degrees ) position at forelimb touchdown. Peak vertical forces on the forelimb were always higher than those on the hindlimb. These three features of the walking gaits of C. jacchus separate it from any other primate studied (including other callitrichids). The walking gaits of C. jacchus are mechanically more similar to those of small, nonprimate mammals. The results of this study support previous models that suggest that the unusual suite of features that typify the walking gaits of most primates are adaptations to the requirements of locomotion on thin arboreal supports. These data, along with data from other primates and marsupials, suggest that primate postcranial and locomotor characteristics are part of a basal adaptation for walking on thin branches.  相似文献   

2.
In 1974, Cartmill introduced the theory that the earliest primate adaptations were related to their being visually oriented predators active on slender branches. Given more recent data on primate‐like marsupials, nocturnal prosimians, and early fossil primates, and the context in which these primates first appeared, this theory has been modified. We hypothesize that our earliest primate relatives were likely exploiting the products of co‐evolving angiosperms, along with insects attracted to fruits and flowers, in the slender supports of the terminal branch milieu. This has been referred to as the primate/angiosperm co‐evolution theory. Cartmill subsequently posited that: “If the first euprimates had grasping feet and blunt teeth adapted for eating fruit, but retained small divergent orbits…” then the angiosperm coevolution theory would have support. The recent discovery of Carpolestes simpsoni provides this support. In addition, new field data on small primate diets, and a new theory concerning the visual adaptations of primates, have provided further evidence supporting the angiosperm coevolution theory.Am. J. Primatol. 75:95‐106, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
The foot, perhaps more than any other region of the primate body, reflects the interaction of positional behaviors with the geometric properties of available supports. The ability to reverse the hind foot during hindlimb suspension while hanging from a horizontal support or descending a large diameter vertical trunk has been noted in many arboreal mammals, including primates. Observations of Varecia variegata in the wild and under seminatural conditions document hindlimb suspension in this lemurid primate. The kinematics and skeletal correlates of this behavior are examined. Analogy is made with the form and function exhibited by nonprimate mammalian taxa employing this behavior. Examples of carnivores and rodents display very similar adaptations of the tarsals while other mammals, such as the xenarthrans, accomplish a similar end by means of different morphologies. However, a suite of features is identified that is shared by mammals capable of hind foot reversal. Hindlimb suspension effectively increases the potential feeding space available to a foraging mammal and represents a significant, and often unrecognized, alternative adaptive strategy to forelimb suspension and prehensile-tail suspension in primates. Am J Phys Anthropol 103:85–102, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

4.
Traditionally, the morphological traits of primates were assumed to be adaptations to an arboreal way of life. However, Cartmill [1972] pointed out that a number of morphological traits characteristic of primates are not found in many other arboreal mammals. He contends that orbital convergence and grasping extremities indicate that the initial divergence of primates involved visual predation on insects in the lower canopy and undergrowth of the tropical forest. However, recent research on nocturnal primates does not support the visually-oriented predation theory. Although insects were most likely important components of the diets of the earliest euprimates, it is argued here that visual predation was not the major impetus for the evolution of the adaptive traits of primates. Recent paleobotanical research has yielded evidence that a major evolutionary event occurred during the Eocene, involving the angiosperms and their dispersal agents. As a result of long-term diffuse coevolutionary interactions with flowering plants, modern primates, bats, and plant-feeding birds all first arose around the Paleocene-Eocene boundary and became the major seed dispersers of modern tropical flora during the Eocene. Thus, it is suggested here that the multitude of resources available on the terminal branches of the newly evolved angiosperm, rain forest trees led to the morphological adaptations of primates of modern aspect.  相似文献   

5.
Current hypotheses for primate origins propose that nails and primate-like grasping hands and feet were important early adaptations for feeding in fine branches. Comparative research in this area has focused on instances of convergence in extant animals, showing that species with primate-like morphology feed predominantly from terminal branches. Little has been done to test whether animals without primate-like morphology engage in similar behavior. We tested the fine-branch niche hypothesis for primate origins by observing branch use in Eastern gray squirrels, Sciurus carolinensis, a species lacking primate grasping adaptations that has been understudied in the context of primate origins. We hypothesized that because gray squirrels lack primate-like grasping adaptations, they would avoid feeding and foraging in terminal branches. Instantaneous focal animal sampling was used to examine the locomotor and postural behaviors used while feeding and foraging. Our results demonstrate habitual and effective usage of terminal branches by gray squirrels while feeding and foraging, primarily on tree seeds (e.g., oak, maple, and elm). Discriminant function analysis indicates that gray squirrels feed and forage like primates, unlike some other tree squirrel species. Given the absence of primate-like features in gray squirrels, we suggest that although selection for fine-branch foraging may be a necessary condition for primate origins, it is not sufficient. We propose an alternative model of primate origins. The Narrow Niche hypothesis suggests that the primate morphological suite evolved not only from selection pressure for fine branch use, but also from a lack of engagement in other activities.  相似文献   

6.
The didelphid Caluromys shows evolutionary convergence towards prosimians in having a relatively large brain, large eyes, small litters, slow development, and agile locomotion. The selection pressures that favored the emergence of primate-like traits in Caluromys from a generalized didelphid ancestor may be analogous to the selection pressures favoring the initial divergence of primates from a primitive nonprimate ancestor, and thus Caluromys provides an independent test of the arboreal hypothesis (Smith: Annual Report of the Board of Regents of the Smithsonian Institution 1912:553–572, 1913), the visual predation hypothesis (Cartmill: The Functional and Evolutionary Biology of Primates, pp. 97–122, 1972), and the angiosperm exploitation hypothesis (Sussman: American Journal of Primatology, in press) of primate origins. Quantitative data on free-ranging C. derbianus in Costa Rica demonstrate that it is highly arboreal, uses visually directed predation to capture arthropod prey, and makes extensive use of terminal branch foraging, where it feeds on small angiosperm products. These observations are consistent with predictions from each model of primate origins, thus suggesting that the hypotheses are not mutually exclusive but are interdependent. The initial divergence of primates probably involved exploitation of the rich angiosperm products and associated insects found in fine terminal branches; visually directed predation may have evolved as an efficient method of insect capture in the terminal branch milieu.  相似文献   

7.
Primates display high forelimb compliance (increased elbow joint yield) compared to most other mammals. Forelimb compliance, which is especially marked among arboreal primates, moderates vertical oscillations of the body and peak vertical forces and may represent a basal adaptation of primates for locomotion on thin, flexible branches. However, Larney and Larson (Am J Phys Anthropol 125 [2004] 42–50) reported that marsupials have forelimb compliance comparable to or greater than that of most primates, but did not distinguish between arboreal and terrestrial marsupials. If forelimb compliance is functionally linked to locomotion on thin branches, then elbow yield should be highest in marsupials relying on arboreal substrates more often. To test this hypothesis, we compared forelimb compliance between two didelphid marsupials, Caluromys philander (an arboreal opossum relying heavily on thin branches) and Monodelphis domestica (an opossum that spends most of its time on the ground). Animals were videorecorded while walking on a runway or a horizontal 7‐mm pole. Caluromys showed higher elbow yield (greater changes in degrees of elbow flexion) on both substrates, similar to that reported for arboreal primates. Monodelphis was characterized by lower elbow yield that was intermediate between the values reported by Larney and Larson (Am J Phys Anthropol 125 [2004] 42–50) for more terrestrial primates and rodents. This finding adds evidence to a model suggesting a functional link between arboreality—particularly locomotion on thin, flexible branches—and forelimb compliance. These data add another convergent trait between arboreal primates, Caluromys, and other arboreal marsupials and support the argument that all primates evolved from a common ancestor that was a fine‐branch arborealist. Am J Phys Anthropol, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
It is often claimed that the walking gaits of primates are unusual because, unlike most other mammals, primates appear to have higher vertical peak ground reaction forces on their hindlimbs than on their forelimbs. Many researchers have argued that this pattern of ground reaction force distribution is part of a general adaptation to arboreal locomotion. This argument is frequently used to support models of primate locomotor evolution. Unfortunately, little is known about the force distribution patterns of primates walking on arboreal supports, nor do we completely understand the mechanisms that regulate weight distribution in primates. We collected vertical peak force data for seven species of primates walking quadrupedally on instrumented terrestrial and arboreal supports. Our results show that, when walking on arboreal vs. terrestrial substrates, primates generally have lower vertical peak forces on both limbs but the difference is most extreme for the forelimb. We found that force reduction occurs primarily by decreasing forelimb and, to a lesser extent, hindlimb stiffness. As a result, on arboreal supports, primates experience significantly greater functional differentiation of the forelimb and hindlimb than on the ground. These data support long-standing theories that arboreal locomotion was a critical factor in the differentiation of the forelimbs and hindlimbs in primates. This change in functional role of the forelimb may have played a critical role in the origin of primates and facilitated the evolution of more specialized locomotor behaviors.  相似文献   

9.
We investigated locomotor and postural behavior during terminal branch feeding in order to gain a better understanding of the motor capabilities of primates. We videotaped wild, juvenile bonnet macaques (Macaca radiata) in India as they fed on flower nectar in a simal tree (Bombax malabaricum). Kinematic analysis revealed that they select specific support surfaces and movements that, for their body design and postures, maximize lateral stability and minimize the chances of falling. These choices are made even though the distance and duration of travel to a selected target are frequently increased. Our discussion focuses on particular concepts of how primates contend with balance problems arboreally, potential reasons for changes in footfall patterns, and how the tail contributes to arboreal locomotion and posture. We concluded that balance problems due to the ratio of body size to branch size are usually avoided, at least among juvenile bonnet macaques, by placing the hands and feet on branches extending laterally from the central support branch and not on the central branch itself. The lateral branches permit a wide base of support, which increases lateral stability. Second, juvenile bonnet macaques have a striking ability to rapidly and repeatedly adapt their gait patterns to changing substrate design with minimal interruption to overall progression. Third, primate tails that are not morphologically specialized for prehension nevertheless have important prehensile and sensory functions in arboreal locomotion and posture.  相似文献   

10.
The coordination of limb movements during mammalian locomotion has been well documented in the literature. Most mammals use lateral sequence (LS) gaits, in which a forelimb follows an ipsilateral hind limb during the stride cycle. Primates, however, tend to utilize diagonal sequence (DS) gaits, whereby a contralateral forelimb follows a given hind limb during the stride cycle. A number of scenarios have been offered to explain why primates favor DS gaits, most of them relating to the use of the arboreal habitat and, in particular, the exploitation of a terminal branch niche. Yet to date, there is surprisingly little evidence to support the advantage of DS gaits for negotiating different aspects of the terminal branch environment. Nonetheless, it is apparent that primates possess unique morphologies and a higher than typically recognized degree of flexibility in gait sequence pattern, both of which likely offer advantages for moving upon discontinuous and unstable terminal branches. This paper reviews potential explanations for the use of DS gaits in primates and considers mechanisms by which gait sequence may be altered during different types of arboreal challenges.  相似文献   

11.
Members of the Order Primates are characterised by a wide overlap of visual fields or optic convergence. It has been proposed that exploitation of either insects or angiosperm products in the terminal branches of trees, and the corresponding complex, three-dimensional environment associated with these foraging strategies, account for visual convergence. Although slender lorises (Loris sp.) are the most visually convergent of all the primates, very little is known about their feeding ecology. This study, carried out over 10 (1/2) months in South India, examines the feeding behaviour of L. lydekkerianus lydekkerianus in relation to hypotheses regarding visual predation of insects. Of 1238 feeding observations, 96% were of animal prey. Lorises showed an equal and overwhelming preference for terminal and middle branch feeding, using the undergrowth and trunk rarely. The type of prey caught on terminal branches (Lepidoptera, Odonata, Homoptera) differed significantly from those caught on middle branches (Hymenoptera, Coleoptera). A two-handed catch accompanied by bipedal postures was used almost exclusively on terminal branches where mobile prey was caught, whereas the more common capture technique of one-handed grab was used more often on sturdy middle branches to obtain slow moving prey. Although prey was detected with senses other than vision, vision was the key sense used upon the final strike. This study strongly supports the notion that hunting for animal prey was a key ecological determinant in selecting for visual convergence early on in primate evolution. The extreme specialisations of slender lorises, however, suggest that early primates were not dedicated faunivores and lend further support to the emerging view that both insects and fruits were probably important components of the diet of basal primates, and that exploitation of fruits may account for other key primate traits.  相似文献   

12.
The study of the locomotion and postures of arboreal squirrels may provide important contextual information on the evolution of the morphology and ecology of sciurids. In this context, we studied the positional behaviour and habitat use of four adult European red squirrels (Sciurus vulgaris L.) in a mixed coniferous forest in northern Greece. Our results show that, during the study period, S. vulgaris extensively used the forest canopy and the terminal branch zone. The use of small and medium supports of all orientations was also particularly frequent. The positional profile of the species was characterized by the dominance of quadrupedal, clawed and airborne locomotion along with seated and standing postures. Quadrupedalism and sitting appeared to promote terminal branch use for food access and manipulation, while claw climbing favored vertical ranging and retreat to trees after terrestrial foraging. Finally, leaping reduced energetic costs during travelling between food sites within the relatively dispersed forest. These results and those of previous research on the positional behaviour of other squirrels reveal several trends related to body size, arboreal or gliding habits and tropical or temperate forest distribution and contribute to the understanding of evolutionary novelty in multiple levels within the sciurid radiation.  相似文献   

13.
Quadrupedal locomotion of primates is distinguished from the quadrupedalism of many other mammals by several features, including a diagonal sequence (DS) footfall used in symmetrical gaits. This presumably unique feature of primate locomotion has been attributed to an ancestral adaptation for cautious arboreal quadrupedalism on thin, flexible branches. However, the functional significance of DS gait remains largely hypothetical. The study presented here tests hypotheses about the functional significance of DS gait by analyzing the gait mechanics of a primate that alternates between DS and lateral sequence (LS) gaits, Cebus apella. Kinematic and kinetic data were gathered from two subjects as they moved across both terrestrial and simulated arboreal substrates. These data were used to test four hypotheses: (1) locomotion on arboreal supports is associated with increased use of DS gait, (2) DS gait is associated with lower peak vertical substrate reaction forces than LS gait, (3) DS gait is associated with greater forelimb/hind limb differentiation in force magnitudes, and (4) DS gait offers increased stability. Our results indicate that animals preferred DS gait on the arboreal substrate, and LS gait while on the ground. Peak vertical substrate reaction forces showed a tendency to be lower in DS gait, but not consistently so. Pole ("arboreal") forces were lower than ground forces in DS gait, but not in LS gait. The preferred symmetrical gait on both substrates was a grounded run or amble, with the body supported by only one limb throughout most of the stride. During periods of bilateral support, the DS gait had predominantly diagonal support couplets. This benefit for stability on an arboreal substrate is potentially outweighed by overstriding, its associated ipsilateral limb interference in DS gait and hind foot positioning in front of the hand on untested territory. DS gait also did not result in an optimal anchoring position of the hind foot under the center of mass of the body at forelimb touchdown. In sum, the results are mixed regarding the superiority of DS gait in an arboreal setting. Consequently, the notion that DS gait is an ancestral adaptation of primates, conditioned by the selection demands of an arboreal environment, remains largely hypothetical.  相似文献   

14.
Within the forest canopy, the shortest gaps between tree crowns lie between slender terminal branches. While the compliance of these supports has previously been shown to increase the energetic cost of gap crossing in arboreal animals (e.g. Alexander 1991 Z. Morphol. Anthropol. 78, 315-320; Demes et al. 1995 Am. J. Phys. Anthropol. 96, 419-429), field observations suggest that some primates may be able to use support compliance to increase the energetic efficiency of locomotion. Here, we calculate the energetic cost of alternative methods of gap crossing in orangutans (Pongo abelii). Tree sway (in which orangutans oscillate a compliant tree trunk with increasing magnitude to bridge a gap) was found to be less than half as costly as jumping, and an order of magnitude less costly than descending the tree, walking to the vine and climbing it. Observations of wild orangutans suggest that they actually use support compliance in many aspects of their locomotor behaviour. This study seems to be the first to show that elastic compliance in arboreal supports can be used to reduce the energetic cost of gap crossing.  相似文献   

15.
This study tests predicted morphoclines in fingertip morphology among four small-bodied (<1 kg) New World monkeys (Saimiri sciureus, Leontopithecus rosalia, Callithrix jacchus, and Saguinus oedipus) in order to test previous functional and adaptive explanations for the evolution of flattened nails, expanded apical pads, and grasping extremities within the Order Primates. Small-bodied platyrrhines which frequently forage among small-diameter substrates are expected to possess 1) relatively expanded apical pads, 2) well-developed epidermal ridges, 3) distally broad terminal phalanges, and 4) reduced flexor and extensor tubercles compared to those species which use large-diameter arboreal supports more frequently for their locomotor and postural behaviors. Results show that as the frequency of small-branch foraging increases among taxa within this sample, relative distal phalanx breadth also increases but distal phalanx length, height, and flexor tubercle size decrease. Moreover, epidermal ridge development becomes more pronounced as the frequency of small-branch foraging increases. Terminal phalanx breadth and epidermal ridge complexity are both positively correlated with apical pad size. The large, flexible apical pad increases stability of the hand and foot on small-diameter arboreal supports because the pad can contact the substrate in several planes which, in turn, enables the pad to resist disruptive forces from different directions by friction and interlocking (Hildebrand, 1995). The observed morphoclines demonstrate that a gradient in form from claw- to nail-like tegulae exists among these taxa. Thus, the distinction between claw- and nail-bearing platyrrhines is essentially arbitrary. These observations corroborate Cartmill's (1972) functional and adaptive model for the loss of claws in primates: namely, expanded apical pads are required for habitual locomotor and postural behaviors on small-diameter supports whereas claws are more useful for positional behaviors on large-diameter substrates. Finally, results from this study support previous suggestions that the keeled tegulae of callitrichines represent a derived postural adaptation rather than a primitive retention from an ancestral eutherian condition. Am J Phys Anthropol 106:113–127, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

16.
Mice raised in experimental habitats containing an artificial network of narrow “arboreal” supports frequently use hallucal grasps during locomotion. Therefore, mice in these experiments can be used to model a rudimentary form of arboreal locomotion in an animal without other morphological specializations for using a fine branch niche. This model would prove useful to better understand the origins of arboreal behaviors in mammals like primates. In this study, we examined if locomotion on these substrates influences the mid‐diaphyseal cross‐sectional geometry of mouse metatarsals. Thirty CD‐1/ICR mice were raised in either arboreal (composed of elevated narrow branches of varying orientation) or terrestrial (flat ramps and walkways that are stratified) habitats from weaning (21 days) to adulthood (≥4 months). After experiments, the hallucal metatarsal (Mt1) and third metatarsal (Mt3) for each individual were isolated and micro‐computed tomography (micro‐CT) scans were obtained to calculate mid‐shaft cross‐sectional area and polar section modulus. Arboreal mice had Mt1s that were significantly more robust. Mt3 cross sections were not significantly different between groups. The arboreal group also exhibited a significantly greater Mt1/Mt3 ratio for both robusticity measures. We conclude that the hallucal metatarsal exhibits significant phenotypic plasticity in response to arboreal treatment due to habitual locomotion that uses a rudimentary hallucal grasp. Our results support the hypothesis that early adaptive stages of fine branch arboreality should be accompanied by a slightly more robust hallux associated with the biomechanical demands of this niche. J. Morphol. 276:759–765, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

17.
The quadrupedal walking gaits of most primates can be distinguished from those of most other mammals by the presence of diagonal-sequence (DS) footfall patterns and higher peak vertical forces on the hindlimbs compared to the forelimbs. The walking gait of the woolly opossum (Caluromys philander), a highly arboreal marsupial, is also characterized by diagonal-sequence footfalls and relatively low peak forelimb forces. Among primates, three species--Callithrix, Nycticebus, and Loris--have been reported to frequently use lateral-sequence (LS) gaits and experience relatively higher peak vertical forces on the forelimbs. These patterns among primates and other mammals suggest a strong association between footfall patterns and force distribution on the limbs. However, current data for lorises are limited and the frequency of DS vs. LS walking gaits in Loris is still ambiguous. To test the hypothesis that patterns of footfalls and force distribution on the limbs are functionally linked, kinematic and kinetic data were collected simultaneously for three adult slender lorises (Loris tardigradus) walking on a 1.25 cm horizontal pole. All subjects in this study consistently used diagonal-sequence walking gaits and always had higher peak vertical forces on their forelimbs relative to their hindlimbs. These results call into question the hypothesis that a functional link exists between the presence of diagonal-sequence walking gaits and relatively higher peak vertical forces on the hindlimbs. In addition, this study tested models that explain patterns of force distribution based on limb protraction angle or limb compliance. None of the Loris subjects examined showed kinematic patterns that would support current models proposing that weight distribution can be adjusted by actively shifting weight posteriorly or by changing limb stiffness. These data reveal the complexity of adaptations to arboreal locomotion in primates and indicate that diagonal-sequence walking gaits and relatively low forelimb forces could have evolved independently.  相似文献   

18.
Interpretation of the adaptive profile of ancestral primates is controversial and has been constrained for decades by general acceptance of the premise that the first primates were very small. Here we show that neither the fossil record nor modern species provide evidence that the last common ancestor of living primates was small. Instead, comparative weight distributions of arboreal mammals and a phylogenetic reconstruction of ancestral primate body mass indicate that the reduction of functional claws to nails -- a primate characteristic that had up until now eluded satisfactory explanation - resulted from an increase in body mass to around 1000 g or more in the primate stem lineage. The associated shift to a largely vegetarian diet coincided with increased angiosperm diversity and the evolution of larger fruit size during the Late Cretaceous.  相似文献   

19.
A re-examination of primate foot and knee anatomy suggests that strepsirrhine primates (adapiforms and lemuriforms) possess a unique and derived hindlimb related to their use of vertical supports. In contrast, leaping adaptations are older and shared by both major euprimate clades, Strepsirrhini and Haplorhini. Combining this derived hindlimb anatomy with leaping suggests that ancestral strepsirrhines were at least frequent vertical support users and leapers, and perhaps vertical clingers and leapers. These initial strepsirrhine adaptations were preadaptive for later lemuriform vertical clingers and leapers. In contrast, haplorhine vertical clingers and leapers require additional foot and leg modifications to accommodate a vertical clinging and leaping lifestyle. The movement pattern called vertical clinging and leaping evolved independently among different primate lineages throughout primate evolutionary history for several different ecological reasons.  相似文献   

20.
The presence of a stable thoracolumbar region, found in many arboreal mammals, is considered advantageous for bridging and cantilevering between discontinuous branches. However, no study has directly explored the link between osteological features cited as enhancing axial stability and the frequency of cantilevering and bridging behaviors in a terminal branch environment. To fill this gap, we collected metric data on costal and vertebral morphology of primate and nonprimate mammals known to cantilever and bridge frequently and those that do not. We also quantified the frequency and duration of cantilevering and bridging behaviors using experimental setups for species that have been reported to show differences in use of small branches and back anatomy (Caluromys philander, Loris tardigradus, Monodelphis domestica, and Cheirogaleus medius). Phylogenetically corrected principal component analysis reveals that taxa employing frequent bridging and cantilevering (C. philander and lorises) also exhibit reduced intervertebral and intercostal spaces, which can serve to increase thoracolumbar stability, when compared to closely related species (M. domestica and C. medius). We observed C. philander cantilevering and bridging significantly more often than M. domestica, which never cantilevered or crossed any arboreal gaps. Although no difference in the frequency of cantilevering was observed between L. tardigradus and C. medius, the duration of cantilevering bouts was significantly greater in L. tardigradus. These data suggest that osteological features promoting axial rigidity may be part of a morpho‐behavioral complex that increases stability in mammals moving and foraging in a terminal branch environment. J. Morphol. 313–327, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号