首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Green alder (Alnus viridis ssp. fruticosa) is a dominant understory shrub during secondary successional development of upland forests throughout interior Alaska, where it contributes substantially to the nitrogen (N) economy through atmospheric N2 fixation. Across a replicated 200+ year old vegetation chronosequence, we tested the hypotheses that green alder has strong effects on soil chemical properties, and that ecosystem-level N inputs via N2 fixation decrease with secondary successional stand development. Across early-, mid-, and late-successional stands, alder created islands of elevated soil N and carbon (C), depleted soil phosphorus (P), and more acidic soils. These effects translated to the stand-level in response to alder stem density. Although neither N2 fixation nor nodule biomass differed among stand types, increases in alder densities with successional time translated to increasing N inputs. Estimates of annual N inputs by A. viridis averaged across the upland chronosequence (6.6 ± 1.2 kg N ha?1 year?1) are substantially less than inputs during early succession by Alnus tenuifolia growing along Alaskan floodplains. However, late-succession upland forests, where densities of A. viridis are highest, may persist for centuries, depending on fire return interval. This pattern of prolonged N inputs to late successional forests contradicts established theory predicting declines in N2-fixation rates and N2-fixer abundance as stands age.  相似文献   

2.
Warren  G. P.  Whitehead  D. C. 《Plant and Soil》1988,112(2):155-165
The available N of 27 soils from England and Wales was assessed from the amounts of N taken up over a 6-month period by perennial ryegrass grown in pots under uniform environmental conditions. Relationships between availability and the distribution of soil N amongst various fractions were then examined using multiple regression. The relationship: available soil N (mg kg–1 dry soil)=(Nmin×0.672)+(Ninc×0.840)+(Nmom×0.227)–5.12 was found to account for 91% of the variance in available soil N, where Nmin=mineral N, Ninc=N mineralized on incubation and Nmom=N in macro-organic matter. The N mineralized on incubation appeared to be derived largely from sources other than the macro-organic matter because these two fractions were poorly correlated. When availability was expressed in terms of available organic N as % of soil organic N (Nao) the closest relationship with other soil characteristics was: Nao=[Ninc×(1.395–0.0347×CNmom]+[Nmom×0.1416], where CNmom=CN ratio of the macro-organic matter. This relationship accounted for 81% of the variance in the availability of the soil organic N.The conclusion that the macro-organic matter may contribute substantially to the available N was confirmed by a subsidiary experiment in which the macro-organic fraction was separated from about 20 kg of a grassland soil. The uptake of N by ryegrass was then assessed on two subsamples of this soil, one without the macro-organic matter and the other with this fraction returned: uptake was appreciably increased by the macro-organic matter.  相似文献   

3.
Although common bean (Phaseolus vulgaris L.) has good potential for N2 fixation, some additional N provided through fertilizer usually is required for a maximum yield. In this study the suppressive effect of N on nodulation and N2 fixation was evaluated in an unfertile soil under greenhouse conditions with different levels of soil fertility (low=no P, K and S additions; medium = 50, 63 and 10 mg kg–1 soil and high = 200, 256 and 40 mg kg–1 soil, respectively) and combined with 5, 15, 60 and 120 mg N kg–1 soil of 15N-labelled urea. The overall average nodule number and weight increased under high fertility levels. At low N applications, nitrogen had a synergistic effect on N2 fixation, by stimulating nodule formation, nitrogenase activity and plant growth. At high fertility and at the highest N rate (120 mg kg–1 soil), the stimulatory effect of N fertilizer on N2 fixation was still observed, increasing the amounts of N2 fixed from 88 up to 375 mg N plant–1. These results indicate that a suitable balance of soil nutrients is essential to obtain high N2 fixation rates and yield in common beans.  相似文献   

4.
The nitrogen cycle in lodgepole pine forests,southeastern Wyoming   总被引:7,自引:4,他引:3  
Storage and flux of nitrogen were studied in several contrasting lodgepole pine (Pinus contorta spp.latifolia) forests in southeastern Wyoming. The mineral soil contained most of the N in these ecosystems (range of 315–860 g · m–2), with aboveground detritus (37.5–48.8g · m–2) and living biomass (19.5–24.0 g · m–2) storing much smaller amounts. About 60–70% of the total N in vegetation was aboveground, and N concentrations in plant tissues were unusually low (foliage = 0.7% N), as were N input via wet precipitation (0.25 g · m–2 · yr–1), and biological fixation of atmospheric N (<0.03 g · m–2 · yr–1, except locally in some stands at low elevations where symbiotic fixation by the leguminous herbLupinus argenteus probably exceeded 0.1 g · m–2 · yr–1).Because of low concentrations in litterfall and limited opportunity for leaching, N accumulated in decaying leaves for 6–7 yr following leaf fall. This process represented an annual flux of about 0.5g · m–2 to the 01 horizon. Only 20% of this flux was provided by throughfall, with the remaining 0.4g · m–2 · yr–1 apparently added from layers below. Low mineralization and small amounts of N uptake from the 02 are likely because of minimal rooting in the forest floor (as defined herein) and negligible mineral N (< 0.05 mg · L–1) in 02 leachate. A critical transport process was solubilization of organic N, mostly fulvic acids. Most of the organic N from the forest floor was retained within the major tree rooting zone (0–40 cm), and mineralization of soil organic N provided NH4 for tree uptake. Nitrate was at trace levels in soil solutions, and a long lag in nitrification was always observed under disturbed conditions. Total root nitrogen uptake was calculated to be 1.25 gN · m–2 · yr–1 with estimated root turnover of 0.37-gN · m–2 · yr–1, and the soil horizons appeared to be nearly in balance with respect to N. The high demand for mineralized N and the precipitation of fulvic acid in the mineral soil resulted in minimal deep leaching in most stands (< 0.02 g · m–2 · yr–1). These forests provide an extreme example of nitrogen behavior in dry, infertile forests.  相似文献   

5.
Soil C and N dynamics were studied in a sequence of old fields of increasing age to determine how these biogeochemical cycles change during secondary succession. In addition, three different late-successional forests were studied to represent possible "steady state" conditions. Surface soil samples collected from the fields and forests were analyzed for total C, H2O-soluble C, total N, potential net N mineralization, potential net nitrification, and microbial biomass. Above-and belowground plant biomass was estimated within each of the old field sites.Temporal changes in soil organic C, total N and total plant biomass were best described by a gamma function [y =at b e ctd +f] whereas a simple exponential model [y =a(l – ebt ) + c] provided the best fit to changes in H2O-soluble C, C:N ratio, microbial C, and microbial N. Potential N mineralization and nitrification linearly increased with field age; however, rates were variable among the fields. Microbial biomass was highly correlated to soil C and N pools and well correlated to the standing crop of plant biomass. In turn, plant biomass was highly correlated to pools and rates of N cycling.Patterns of C and N cycling within the old field sites were different from those in a northern hardwood forest and a xeric oak forest; however, nutrient dynamics within an oak savanna were similar to those found in a 60-yr old field. Results suggest that patterns in C and N cycling within the old-field chronosequence were predictable and highly correlated to the accrual of plant and microbial biomass.  相似文献   

6.
Understanding forest carbon cycling responses to atmospheric N deposition is critical to evaluating ecosystem N dynamics. The natural abundance of 15N (??15N) has been suggested as an efficient and non-invasive tool to monitor N pools and fluxes. In this study, three successional forests in southern China were treated with four levels of N addition. In each treatment, we measured rates of soil N mineralization, nitrification, N2O emission and inorganic N leaching as well as N concentration and ?? 15N of leaves, litters and soils. We found that foliar N concentration and ??15N were higher in the mature broadleaf forest than in the successional pine or mixed forests. Three-year continuous N addition did not change foliar N concentration, but significantly increased foliar ?? 15N (p < 0.05). Also, N addition decreased the ?? 15N of top soil in the N-poor pine and mixed forests and significantly increased that of organic and mineral soils in N-rich broadleaf forests (p < 0.05). In addition, the soil N2O emission flux and inorganic N leaching rate increased with increasing N addition and were positively correlated with the 15N enrichment factor (?? p/s) of forest ecosystems. Our study indicates that ?? 15N of leaf, litter and soil integrates various information on plant species, forest stand age, exogenous N input and soil N transformation and loss, which can be used to monitor N availability and N dynamics in forest ecosystems caused by increasing N deposition in the future.  相似文献   

7.
A group of 14-healthy men performed anisotonic isometric contractions (AIC), for 60 s, at an intensity of 100% maximal voluntary contraction force (MVC) during handgrip (HG) and leg extension (LE). Heart rate (f c), stroke volume index (SVI) and cardiac output index (QcI) were measured during the last 10 s of both AIC by an impedance reography method. Force (F) exerted by the subjects was recorded continuously and reported as a relative force (F r) (% MVC). The F generated during MVC was greater for LE than for HG (502.I N compared to 374.6 N, P < 0.001). The rate of decrease in F r was significantly slower for LE than HG for the first 25 s of the exercise (phase 1 of AIC). The F r developed by the subjects at the end of AIC was 40% MVC for both LE and HG. The increase in f c was greater for LE (63 beats · min–1) than for HG (52 beats · min–1), P < 0.01. The SVI decreased significantly from the resting level by 17.0 ml · m–2 and by 18.2 ml · m–2 for LE and HG, respectively. The QcI increased insignificantly for HG by 0.091 · min–1 · m–2 andsignificantly forLE by 0.561 · min–1 · m–2 (P < 0.001). It was concluded that although both AIC caused a significant decrease in SVI, greater increases in f c and Qc were observed for LE than for HG. The greater f c and Qc reported during LE was probably related to the greater relative force exerted by LE during phase 1 of AIC. It seems, therefore that central command might have dominated for phase 1 of AIC but that the muscle reflex also contributed significantly to the control of the cardiac response to the high intensity AIC.  相似文献   

8.
Ledgard  S.F.  Sprosen  M.S.  Penno  J.W.  Rajendram  G.S. 《Plant and Soil》2001,229(2):177-187
Effects of rate of nitrogen (N) fertilizer and stocking rate on production and N2 fixation by white clover (Trifolium repens L.) grown with perennial ryegrass (Lolium perenne L.) were determined over 5 years in farmlets near Hamilton, New Zealand. Three farmlets carried 3.3 dairy cows ha–1 and received urea at 0, 200 or 400 kg N ha–1 yr–1 in 8–10 split applications. A fourth farmlet received 400 kg N ha–1 yr–1 and had 4.4 cows ha–1.There was large variation in annual clover production and total N2 fixation, which in the 0 N treatment ranged from 9 to 20% clover content in pasture and from 79 to 212 kg N fixed ha–1 yr–1. Despite this variation, total pasture production in the 0 N treatment remained at 75–85% of that in the 400 N treatments in all years, due in part to the moderating effect of carry-over of fixed N between years.Fertilizer N application decreased the average proportion of clover N derived from N2 fixation (PN; estimated by 15N dilution) from 77% in the 0 N treatment to 43–48% in the 400 N treatments. The corresponding average total N2 fixation decreased from 154 kg N ha–1 yr–1 to 39–53 kg N ha–1 yr–1. This includes N2 fixation in clover tissue below grazing height estimated at 70% of N2 fixation in above grazing height tissue, based on associated measurements, and confirmed by field N balance calculations. Effects of N fertilizer on clover growth and N2 fixation were greatest in spring and summer. In autumn, the 200 N treatment grew more clover than the 0 N treatment and N2 fixation was the same. This was attributed to more severe grazing during summer in the 0 N treatment, resulting in higher surface soil temperatures and a deleterious effect on clover stolons.In the 400 N treatments, a 33% increase in cow stocking rate tended to decrease PN from 48 to 43% due to more N cycling in excreta, but resulted in up to 2-fold more clover dry matter and N2 fixation because lower pasture mass reduced grass competition, particularly during spring.  相似文献   

9.
This study was conducted to examine the effects of varying N rates and cropping systems (mixedversus pure stand) on the suitability of oats (Avena sativa L.) for estimating N2 fixed in sequentially harvested vetch (Vicia sativa L.) over two growing seasons (1984–85 and 1985–86). The N rates were, 20 and 100 kg N ha–1 in 1984–85 and 15 and 60 kg N ha–1 in 1985–86. In the 1984–85 season, vetch at maturity derived 76 and 63% N from fixation at the high and low N rates respectively. The corresponding values for the second season were 66 and 42%. Except in the 1985–86 season when some significantly higher values of % N2 fixed were estimated by using the reference crop grown at the higher (A-value approach) than at the lower N rate (isotope-dilution approach), both approaches resulted in similar measurements of N2 fixed. In the 1984–85 season, similar values of N2 fixed were obtained using either the pure or mixed stand oats reference crops. Although in the 1985–86 season, the mixed reference crop occasionally estimated lower % N2 fixed than pure oats, total N2 fixed estimates were always similar (P<0.05). Thus, in general, N fertilization and cropping system of the reference crop did not significantly influence estimates of N2 fixation.  相似文献   

10.
The observation of acclimation in leaf photosynthetic capacity to differences in growth irradiance has been widely used as support for a hypothesis that enables a simplification of some soil‐vegetation‐atmosphere transfer (SVAT) photosynthesis models. The acclimation hypothesis requires that relative leaf nitrogen concentration declines with relative irradiance from the top of a canopy to the bottom, in 1 : 1 proportion. In combination with a light transmission model it enables a simple estimate of the vertical profile in leaf nitrogen concentration (which is assumed to determine maximum carboxylation capacity), and in combination with estimates of the fraction of absorbed radiation it also leads to simple ‘big‐leaf’ analytical solutions for canopy photosynthesis. We tested how forests deviate from this condition in five tree canopies, including four broadleaf stands, and one needle‐leaf stand: a mixed‐species tropical rain forest, oak (Quercus petraea (Matt.) Liebl), birch (Betula pendula Roth), beech (Fagus sylvatica L.) and Sitka spruce (Picea sitchensis (Bong.) Carr). Each canopy was studied when fully developed (mid‐to‐late summer for temperate stands). Irradiance (Q, µmol m?2 s?1) was measured for 20 d using quantum sensors placed throughout the vertical canopy profile. Measurements were made to obtain parameters from leaves adjacent to the radiation sensors: maximum carboxylation and electron transfer capacity (Va, Ja, µmol m?2 s?1), day respiration (Rda, µmol m?2 s?1), leaf nitrogen concentration (Nm, mg g?1) and leaf mass per unit area (La, g m?2). Relative to upper‐canopy values, Va declined linearly in 1 : 1 proportion with Na. Relative Va also declined linearly with relative Q, but with a significant intercept at zero irradiance (P < 0·01). This intercept was strongly related to La of the lowest leaves in each canopy (P < 0·01, r2 = 0·98, n= 5). For each canopy, daily lnQ was also linearly related with lnVa(P < 0·05), and the intercept was correlated with the value for photosynthetic capacity per unit nitrogen (PUN: Va/Na, µmol g?1 s?1) of the lowest leaves in each canopy (P < 0·05). Va was linearly related with La and Na(P < 0·01), but the slope of the Va : Na relationship varied widely among sites. Hence, whilst there was a unique Va : Na ratio in each stand, acclimation in Va to Q varied predictably with La of the lowest leaves in each canopy. The specific leaf area, Lm(cm2 g?1), of the canopy‐bottom foliage was also found to predict carboxylation capacity (expressed on a mass basis; Vm, µmol g?1 s?1) at all sites (P < 0·01). These results invalidate the hypothesis of full acclimation to irradiance, but suggest that La and Lm of the most light‐limited leaves in a canopy are widely applicable indicators of the distribution of photosynthetic capacity with height in forests.  相似文献   

11.
To establish safe levels for physical strain in occupational repetitive lifting, it is of interest to know the specific maximal working capacity. Power output, O2 consumption, heart rate and ventilation were measured in ten experienced forestry workers during maximal squat and stoop repetitive lifting. The two modes of repetitive lifting were also compared with maximal treadmill running. In addition, electromyogram (EMG) activity in four muscles was recorded and perceived central, local low-back and thigh exertion were assessed during the lifting modes. No significant difference was found in power output between the two lifting techniques. Despite this the mean O2 consumption was significantly greater during maximal squat lifting [38.7 (SD 5.8) ml·kg–1-·min–1] than maximal stoop lifting [32.9 (SD 5.7) ml·kg–1·min–1] (P<0.001). No significant correlation was found between O2 consumption (in millilitres per kilogram per minute) during maximal treadmill running and maximal stoop lifting, while O2 consumption during maximal squat lifting correlated highly with that of maximal treadmill running (r=0.928, P<0.001) and maximal stoop lifting (r=0.808, P<0.01). While maximal heart rates were significantly different among the three types of exercise, no such differences were found in the central rated perceived exertions. Perceived low-back exertion was rated significantly lower during squat lifting than during stoop lifting. The EMG recordings showed a higher activity for the vastus lateralis muscle and lower activity for the biceps femoris muscle during squat lifting than during stoop lifting. Related to the maximal voluntary contraction, the erector spinae muscle showed the highest activity irrespective of lifting technique.  相似文献   

12.
Relationships among aboveground net primary production (ANPP) and forest canopy properties were investigated in secondary successional forests of similar age and disturbance history in northern Lower Michigan, USA. Aboveground biomass, ANPP, canopy leaf area index (LAI), and several canopy nitrogen (N) measures were estimated from 12 stands representing major landform-level ecosystems and vegetation associations. Stand single-date and growing season average normalized difference vegetation indices (NDVI) were derived from Landsat TM. ANPP correlated most strongly with total canopy N content (r 2 = 0.81, P < 0.001), followed by LAI (r 2 = 0.73, P < 0.001) and area-based canopy-average leaf N concentration (r 2 = 0.37, P < 0.05). No significant relationship was detected between ANPP and mass-based canopy-average leaf N concentration. Stand ANPP correlated positively with both total canopy N content (r 2 = 0.62, P < 0.05) and mass-based leaf N concentration (r 2 = 0.53, P < 0.05) of commonly dominant Populus spp. Relatively higher ANPP, total canopy N content and LAI corresponded to simultaneous presence of shade-intolerant P. grandidentata with shade-tolerant species. Both forms of NDVI were significantly related to ANPP, and more strongly to total canopy N content and LAI; relationships were stronger for seasonally averaged (r 2 ≥ 0.75, P < 0.001) than for single-date NDVI (r 2 ≥ 0.52, P < 0.01). Results indicate that on the transitioning study landscapes, ANPP was more closely related to canopy N content than to LAI, seasonally averaged NDVI was a more reliable predictor of ANPP and canopy properties than the single-date index, whereas measured canopy characteristics varied significantly between major landform-level ecosystems. The ongoing decline of P. grandidentata is likely to alter aboveground carbon and pools and fluxes in the course of succession.  相似文献   

13.
Common bean (Phaseolus vulgaris L.) is able to fix 20–60 kg N ha–1 under tropical environments in Brazil, but these amounts are inadequate to meet the N requirement for economically attractive seed yields. When the plant is supplemented with N fertilizer, N2 fixation by Rhizobium can be suppressed even at low rates of N. Using the 15N enriched method, two field experiments were conducted to compare the effect of foliar and soil applications of N-urea on N2 fixation traits and seed yield. All treatments received a similar fertilization including 10 kg N ha–1 at sowing. Increasing rates of N (10, 30 and 50 kg N ha–1) were applied for both methods. Foliar application significantly enhanced nodulation, N2 fixation (acetylene reduction activity) and yield at low N level (10 kg N ha–1). Foliar nitrogen was less suppressive to nodulation, even at higher N levels, than soil N treatments. In the site where established Rhizobium was in low numbers, inoculation contributed substantially to increased N2 fixation traits and yield. Both foliar and soil methods inhibited nodulation at high N rates and did not significantly increase bean yield, when comparing low (10 kg N ha–1) and high (50 kg N ha–1) rates applied after emergence. In both experiments, up to 30 kg N ha–1 of biologically fixed N2 were obtained when low rates of N were applied onto the leaves.  相似文献   

14.
Soil net nitrogen (N) mineralization (Nmin) is a pivotal process in the global N cycle regulating the N availability of plant growth. Understanding the spatial patterns of Nmin, its temperature sensitivity (Q10) and regulatory mechanisms is critical for improving the management of soil nutrients. In this study, we evaluated 379 peer‐reviewed scientific papers to explore how Nmin and the Q10 of Nmin varied among different ecosystems and regions at the global scale. The results showed that Nmin varied significantly among different ecosystems with a global average of 2.41 mg N soil kg?1 day?1. Furthermore, Nmin significantly decreased with increasing latitude and altitude. The Q10 varied significantly among different ecosystems with a global average of 2.21, ranging from the highest found in forest soils (2.43) and the lowest found for grassland soils (1.67) and significantly increased with increasing latitude. Path analyses indicated that Nmin was primarily affected by the content of soil organic carbon (C), soil C:N ratio, and clay content, where Q10 was primarily influenced by the soil C:N ratio and soil pH. Furthermore, the activation energy (Ea) of soil N mineralization was significantly and negative correlated with the substrate quality index among all ecosystems, indicating the applicability of the carbon quality temperature hypothesis to soil N mineralization at a global scale. These findings provided empirical evidence supporting that soil N availability, under global warming scenarios, is expected to increase stronger in colder regions as compared with that low‐latitude regions due to the higher Q10. This may alleviate the restriction of N supply for increased primary productivity at higher latitudes.  相似文献   

15.
Large increases in nitrogen (N) inputs to terrestrial ecosystems typically have small effects on immediate N outputs because most N is sequestered in soil organic matter. We hypothesized that soil organic N storage and the asynchrony between N inputs and outputs result from rapid accumulation of N in stable soil organic pools. We used a successional sequence on floodplains of the Tanana River near Fairbanks, Alaska to assess rates of stable N accumulation in soils ranging from 1 to 500+ years old. One-year laboratory incubations with repeated leaching separated total soil N into labile (defined as inorganic N leached) and stable (defined as total minus labile N) pools. Stable N pools increased faster (2 g N m–2 yr–1) than labile N (0.4 g N m–2 yr–1) pools during the first 50 years of primary succession; labile N then plateaued while stable and total N continued to increase. Soil C pools showed similar trends, and stable N was correlated with stable C (r2 = 0.95). From 84 to 95 % of soil N was stable during our incubations. Over successional time, the labile N pool declined as a proportion of total N, but remained large on an aerial basis (up to 38 g N m–2). The stoichiometry of stable soil N changed over successional time; C:N ratios increased from 10 to 22 over 275 years (r2 = 0.69). A laboratory 15N addition experiment showed that soils had the capacity to retain much more N than accumulated naturally during succession. Our results suggest that most soil N is retained in a stable organic pool that can accumulate rapidly but is not readily accessible to microbial mineralization. Because stable soil organic matter and total ecosystem organic matter have flexible stoichiometry, net ecosystem production may be a poor predictor of N retention on annual time scales.  相似文献   

16.
Productivity in boreal ecosystems is primarily limited by available soil nitrogen (N), and there is substantial interest in understanding whether deposition of anthropogenically derived reactive nitrogen (Nr) results in greater N availability to woody vegetation, which could result in greater carbon (C) sequestration. One factor that may limit the acquisition of Nr by woody plants is the presence of bryophytes, which are a significant C and N pool, and a location where associative cyanobacterial N‐fixation occurs. Using a replicated stand‐scale N‐addition experiment (five levels: 0, 3, 6, 12, and 50 kg N ha?1 yr?1; n=6) in the boreal zone of northern Sweden, we tested the hypothesis that sequestration of Nr into bryophyte tissues, and downregulation of N‐fixation would attenuate Nr inputs, and thereby limit anthropogenic Nr acquisition by woody plants. Our data showed that N‐fixation per unit moss mass and per unit area sharply decreased with increasing N addition. Additionally, the tissue N concentrations of Pleuorzium schreberi increased and its biomass decreased with increasing N addition. This response to increasing N addition caused the P. schreberi N pool to be stable at all but the highest N addition rate, where it significantly decreased. The combined effects of changed N‐fixation and P. schreberi biomass N accounted for 56.7% of cumulative Nr additions at the lowest Nr addition rate, but only a minor fraction for all other treatments. This ‘bryophyte effect’ can in part explain why soil inorganic N availability and acquisition by woody plants (indicated by their δ15N signatures) remained unchanged up to N addition rates of 12 kg ha?1 yr?1 or greater. Finally, we demonstrate that approximately 71.8% of the boreal forest experiences Nr deposition rates at or below 3 kg ha?1 yr?1, suggesting that bryophytes likely limit woody plant acquisition of ambient anthropogenic Nr inputs throughout a majority of the boreal forest.  相似文献   

17.
Ritter  Eva  Vesterdal  Lars  Gundersen  Per 《Plant and Soil》2003,249(2):319-330
In many European countries, surplus agricultural production and ecological problems due to intensive soil cultivation have increased the interest in afforestation of arable soils. Many environmental consequences which might rise from this alternative land-use are only known from forest establishment on less intensively managed or marginal soils. The present study deals with changes in soil properties following afforestation of nutrient-rich arable soils. A chronosequence study was carried out comprising seven Norway spruce (Picea abies (Karst.) L.) and seven oak (Quercus robur L.) stands established from 1969 to 1997 on former horticultural and agricultural soils in the vicinity of Copenhagen, Denmark. For comparison, a permanent pasture and a ca. 200-year-old mixed deciduous forest were included. This paper reports on changes in pH values, base saturation (BSeff), exchangeable calcium, soil N pools (Nmin contents), and C/N ratios in the Ap-horizon (0–25 cm) and the accumulated forest floor. The results suggest that afforestation slowly modifies soil properties of former arable soils. Land-use history seems to influence soil properties more than the selected tree species. An effect of tree species was only found in the forest floor parameters. Soil acidification was the most apparent change along the chronosequence in terms of a pH decrease from 6 to 4 in the upper 5 cm soil. Forest floor pH varied only slightly around 5. Nitrogen storage in the Ap-horizon remained almost constant at 5.5 Mg N ha–1. This was less than in the mineral soil of the ca. 200-year-old forest. In the permanent pasture, N storage was somewhat higher in 0–15 cm depth than in afforested stands of comparable age. Nitrogen storage in the forest floor of the 0–30-year-old stands increased in connection with the build-up of forest floor mass. The increase was approximately five times greater under spruce than oak. Mineral soil C/N ratios ranged from 10 to 15 in all stands and tended to increase in older stands only in 0–5 cm depth. Forest floor C/N ratios were higher in spruce stands (26.4) as compared to oak stands (22.7). All stands except the youngest within a single tree species had comparable C/N ratios.  相似文献   

18.
Cobo  J. G.  Barrios  E.  Kass  D. C. L.  Thomas  R. J. 《Plant and Soil》2002,240(2):331-342
The decomposition and nutrient release of 12 plant materials were assessed in a 20-week litterbag field study in hillsides from Cauca, Colombia. Leaves of Tithonia diversifolia (TTH) and Indigofera constricta (IND) decomposed quickly (k=0.035±0.002 d–1), while those of Cratylia argentea (CRA) and the stems evaluated decomposed slowly (k=0.007±0.002 d–1). Potassium presented the highest release rates (k>0.085 d–1). Rates of N and P release were high for all leaf materials evaluated (k>0.028 d–1) with the exception of CRA (N and P), TTH and IND (P). While Mg release rates ranged from 0.013 to 0.122 d–1, Ca release was generally slower (k=0.008–0.041 d–1). Initial quality parameters that best correlated with decomposition (P>0.001) were neutral detergent fibre, NDF (r=–0.96) and in vitro dry matter digestibility, IVDMD (r=0.87). It is argued that NDF or IVDMD could be useful lab-based tests during screening of plant materials as green manures. Significant correlations (P>0.05) were also found for initial quality parameters and nutrient release, being most important the lignin/N ratio (r=–0.71) and (lignin+polyphenol)/N ratios (r=–0.70) for N release, the C/N (r=0.70) and N/P ratios (r=–0.66) for P release, the hemicellulose content (r=–0.75) for K release, the Ca content (r=0.82) for Ca release, and the C/P ratio (r=0.65) for Mg release. After 20 weeks, the leaves of Mucuna deerengianum released the highest amounts of N and P (144.5 and 11.4 kg ha–1, respectively), while TTH released the highest amounts of K, Ca and Mg (129.3, 112.6 and 25.9 kg ha–1, respectively). These results show the potential of some plant materials studied as sources of nutrients in tropical hillside agroecosystems.  相似文献   

19.
The short-term effect of a single fire, and the long-term effect of recent fire history and successional stage on total and mineral N concentration, net nitrogen mineralization, and nitrification were evaluated in soils from a steep semi-arid shrubland chronosequence in southeast Spain. A single fire significantly increased soil mineral N availability and net nitrification. Increasing fire frequency in the last few decades was. associated with a sharp decrease in surface soil organic matter and total N concentrations and pools, and with changes in the long-term N dynamic patterns. The surface-soil extractable NH4 +:NO3 ratio increased throughout the chronosequence. All net mineralized N in laboratory incubations from all sites was converted to nitrate, suggesting that allelochemic inhibition of net nitrification is probably not important in this system. Net nitrification in samples during incubation increased through the sere. The maximum rate of net nitrification (kmax) increased through the first three stages of the sere. A linear relationship was found between total soil N and N mineralization, and both kmax and net nitrification for the first three stages of the sere, suggesting that total N and ammonification are likely to be the control mechanisms of nitrification within the sere. The oldest site exhibited the lowest specific kmax and the highest, potential soil respiration rate suggesting that a lower N quality and increasing competition for ammonium might also limit nitrification at least in the long-unburned garrigue site.  相似文献   

20.
In a randomly selected sample of 88 men and 115 women, aged 23–27 years from Denmark, maximal oxygen uptake ( O2max), maximal voluntary isometric contraction (MVC) in four muscle groups and physical activity were studied. The O2max was 48.0 ml · min–1 kg–1 and 39.6 ml · min–1 · kg–1 for the men and the women, respectively. The MVC was 10% lower than in a comparable group of Danes of the same age and height studied 35 years ago. Only in men was sports activity directly related to O2max (ml · min–1 · kg–1; r=0.31, P<0.01). The MVC of the knee extensors was related to O2max in the men (r=0.31, P<0.01), but there was no relationship between the other measurements of MVC and O2max. In the women O2max (ml · min–1 · kg–1) was only related to body size, i.e. body mass index, percentage body fat and body mass [(r= –0.47, –0.48 (both P<0.001) and –0.34. (P<0.01), respectively)]. There were differences in O2max in the men, according to education and occupation. Blue collar workers and subjects attending vocational or trade schools in 1983 had lower O2max and more of them were physically inactive. In the women differences were also found, but there was no clear pattern among the groups. More of the women participated regularly in sports activity, but more of the men were very active compared to the women.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号