首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A heterodimeric enzyme (gamma-glutamyltransferase) was studied in the reversed micellar medium of Aerosol OT (AOT) in octane. As was shown earlier, the size (radius) of inner cavity of the AOT-reversed micelles is determined by their hydration degree, i.e., [H2O]/[AOT] molar ratio, in the system. Owing to this, the dependence of hydrolytic, transpeptidation and autotranspeptidation activities of the enzyme on the hydration degree was investigated using L- and D-isomers of gamma-glutamyl(3-carboxy-4-nitro)anilide and glycylglycine as substrates. For all of the reaction types, the observed dependences are curves with three optima. The optima are found at the hydration degrees, [H2O]/[AOT] = 11, 17 and 26 when the inner cavity radii of reversed micelles are equal to the size of light (Mr 21,000) and heavy (Mr 54,000) subunits of gamma-glutamyltransferase, and to their dimer (Mr 75,000), respectively. Ultracentrifugation experiments showed that a change of the hydration degree resulted in a reversible dissociation of the enzyme to light and heavy subunits. The separation of light and heavy subunits of gamma-glutamyltransferase formed in reversed micelles was carried out and their catalytic properties were studied. The two subunits catalyze hydrolysis and transpeptidation reactions; autotranspeptidation reaction is detected only in the case of the heavy subunit. These findings imply that the reversed micelles of surfactants in organic solvents function as the matrices with adjustable size permitting to regulate the supramolecular structure and the catalytic activity of oligomeric enzymes.  相似文献   

2.
A dimeric enzyme (alkaline phosphatase from calf intestinal mucosa) was studied in the reversed micellar medium of Aerosol OT (AOT) in octane. The dependence of the enzyme's activity on the hydration degree (on the size of micelles) is a curve with two optima corresponding to the hydration degrees [H2O]/[AOT] = 17 and 25; when the inner cavity radii of reversed micelles are equal to the size of the enzyme's monomer (Mr = 70 000) and of the dimer (Mr = 140 000). Ultracentrifugation experiments showed that a reversible dissociation of the enzyme into subunits takes place as a result of the change of the hydration degree; the first and second maxima corresponding to the functioning of the monomeric and dimeric forms of the enzyme, respectively.  相似文献   

3.
Regulation of supra-macromolecular composition and catalytic activity of a heterodimeric enzyme, gamma-glutamyltransferase, in the system of Aerosol OT (sodium bis(2-ethylhexyl) sulfosuccinate) reversed micelles in octane were studied. Variation of the surfactant hydration degree (parameter, determining dimensions of the polar inner cavity of the micelle) causes a reversible dissociation of the enzyme to light and heavy subunits. Both enzyme subunits possess catalytic activity. The light and heavy subunits of the enzyme were separated on a preparative scale in a reversed micelle system using ultracentrifugation. The active centers of gamma-glutamyltransferase were studied using its irreversible inhibitor--AT-125 (L-(alpha S, 5S)-alpha-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid). Separation of the gamma-glutamyltransferase subunits results in the 'opening' of a new active center located at the heavy subunit. In the dimer form of the enzyme this center is masked and it is not accessible to both substrate and inhibitor molecules.  相似文献   

4.
Spectral and catalytic parameters of peroxidase solubilized in the aerosol OT-water-octane system have been studied. The spectrum of peroxidase solubilized in octane with AOT reversed micelles, a degree of surfactant hydration being above 12, is actually identical to that of the enzyme aqueous solution. On the other hand, significant spectral changes have been detected when transferring the enzyme from water to the reversed micelle medium at low degrees of surfactant hydration, precisely [H2O]/[AOT] less than 12. The reversed micelle-entrapped peroxidase catalyses the oxidation of pyrogallol with hydrogen peroxide much more actively (at [H2O]/[surfactant] approximately 13) than that in aqueous solution. The entrapment of peroxidase into surfactant reversed micelles increases precisely the catalytic constant of the reaction, i.e. the virtual reactivity of the enzyme increases ten and hundred times depending on degrees of surfactant hydration and concentration. The systems of reversed micelles may be considered as models of biomembranes. Our findings hence show that enzymes in vivo can be much more catalytically active then it appears possible to reveal in conventional experiments in vitro in aqueous solutions.  相似文献   

5.
The properties of penicillin acylase from E. coli solubilized by hydrated reversed micelles of Aerozol OT (AOT) in octane were studied. The catalytic activity dependence on the hydration degree, a parameter which determines the size of the micelle inner cavity, represents a curve with three optima, each corresponding to the enzyme functioning either in a dimer form (omega 0 = 23) or in the form of separate subunits--heavy, beta, and light, alpha, at omega 0 = 20 and 14, respectively. Reversible dissociation of the enzyme was confirmed by ultracentrifugation followed by electrophoresis. Preparative isolation of penicillin acylase subunits, their catalytic activity being retained, was shown to be possible.  相似文献   

6.
Regulation of the supramolecular structure and catalytic activity of the heterodimeric enzyme gamma-glutamyltransferase in the system of Aerosol OT reversed micelles in octane was studied. Variation of the hydration degree causes a reversible dissociation of the enzyme to the light and heavy subunits, both possessing the catalytic activity. The subunits were separated on the preparative scale in the reversed micelle system using ultracentrifugation. The active centres of gamma-glutamyltransferase were studied using the enzyme's irreversible inhibitor AT-125 (L-(alpha S, 5S)-alpha-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid). It is shown that the separation of the gamma-glutamyltransferase subunits results in "opening" of a new active centre in the heavy subunit, whereas in the enzyme's dimeric form this centre is masked and not accessible to the inhibitor's molecule. The kinetic and inhibitor analysis data indicate that the active centres in the light and heavy subunits are similar.  相似文献   

7.
The alterations in the catalytic activity of the horseradish peroxidase after its interaction with antibodies against this enzyme have been studied in buffered solution and in reversed Aerosol OT (AOT) micelles in heptane. The antibodies were obtained by immunizing the rabbits with electrophoretically homogeneous enzyme and were purified by affinity chromatography. In the AOT micelles and mixed micelles containing AOT and Triton X-45, the enzyme interacted with antibodies very rapidly (in less than 5 min), i.e. the micelles did not hinder effective interaction between the enzyme and antibodies. The decrease in the peroxidase catalytic activity upon its interaction with antibodies in a micellar medium was determined by [H2O]/[AOT] ratio, pH and molarity of polar nucleus, as well as by the initial concentration of antibody. In buffered solutions, the decrease n the peroxidase activity of the enzyme--antibody complex was only weakly dependent on pH and molarity of a buffer solution.  相似文献   

8.
The catalytic function of catalase and its peroxidatic activity during tetramethylbenzidine (TMB) oxidation by cumene hydroperoxide were studied in reversed micelles of Aerosol OT (AOT) in octane relative to the [H2O]/[AOT] ratio and the initial catalase concentration. The optimum conditions permitting to retain the catalytic activity of the enzyme and its ability to induce peroxidation of TMB, were found. The catalytic function of the enzyme was shown to be dependent on its concentration in AOT micelles. The catalase stability monitored by the catalytic reaction and the decrease of the Soret band were analyzed. Both processes have two phases differing by the rate constants of the pseudo-first order. The catalase inserted into AOT micelles is characterized by the high stability as compared to other hemoproteins (cytochrome P-450, myoglobin, hemoglobin, peroxidase) under identical conditions.  相似文献   

9.
The regularities of their functioning of enzyme, water-soluble and membrane forms, in the systems of the reversed micelles of surfactants in organic solvents are compared. Using as examples gamma-glutamyltransferase (in AOT reversed micelles in octane) and aminopeptidase (in Brij 96 reversed micelles in cyclohexane), the principal difference in the catalytic activity regulation of water-soluble and membrane forms is demonstrated. The catalytic activity of the membrane form depends considerably on the surfactant concentration at the constant degree of hydration, whereas the activity of the water-soluble form is constant under these conditions. The catalytic activity dependence on the surfactant concentration is regarded as a test for enzyme membrane activity.  相似文献   

10.
The enzymatic conversion of cholesterol to cholestenone by cholesterol oxidase (Brevibacterium sp.)in reversed micelles in a system composed of AOT/isooctane/water/cholesterol has been examined. The catalytic activity of the enzyme was correlated with the physicochemical properties of water in water-in-oil (w/o) microemulsion systems. In a system consisting of 3 wt % AOT in isooctane, reversed micelles started to form as the [H(2)O]/[AOT] (e.g., the w(0)) ratio increased above 4-5. The formation of reversed micelles with a core of neat (bulk) water was verified from determinations of both the partial molar volume of water and the scissors vibration of water [with Fourier transform infrared (FTIR) spectroscopy] in the w/o microemulsion systems. A plot of enzyme activity vs. w(0) indicated that the hydration of enzyme molecules per se was not sufficient to give rise to catalytic activity. Instead, it appeared that the formation of an aqueous micellar core was necessary for full activation of the enzyme. Based on micelle size distribution analysis, it was estimated that about one micelle per one thousand contained an enzyme molecule. Since the apparent reaction rate could be markedly enhanced by increasing the enzyme/water ratio, we conclude that the number of enzyme-containing micelles was an important rate-limiting factor in the system.  相似文献   

11.
The regulations of functioning of water soluble and membrane forms of enzymes in the systems of reversed micelles of surfactants in organic solvents are compared. By an examples of gamma-glutamyltransferase (in AOT reversed micelles in octane) and amino-peptidase (in Brij 96 reversed micelles in cyclohexane) the principal difference in the catalytic activity regulation of water soluble and membrane forms is demonstrated. The catalytic activity of the membrane form depends largely on the surfactant concentration at the constant hydration degree, whereas the activity of the water soluble form is constant under these conditions. The catalytic activity dependence on the surfactant concentration is regarded as a "test for the enzyme's membrane activity".  相似文献   

12.
The rate of linoleic acid peroxidation catalysed by soybean lipoxygenase I was studied as a function of the hydration degree of aerosol OT (bis(2-ethylhexyl) sulfosuccinate sodium salt) reversed micelles in octane. Lipoxygenase reaction parameters for the micelle-bound substrate were spectrophotometrically determined. The linoleic acid distribution between the micelles and octane was detected by the sedimentation method, with the concentration of linoleic acid in supernatant after settling of micelles (i.e. the concentration of free linoleic acid) being estimated by the enzymatic method. The apparent constant of linoleic acid distribution (the ratio of the bound and free substrate concentrations) was enhanced with increasing hydration of reversed micelles. The dependence of the enzymatic reaction rate on the bound substrate concentration obeyed the empiric Hill equation. The Hill coefficient remained practically constant (h = 1.34) as the hydration degree changed. Parameters of the lipoxygenase reaction, enzyme reaction limiting rate V and semi-saturation substrate concentration [S]0.5 increased with increasing degree of hydration and reached the optimum at [H2O]/[AOT] approximately 30, where dimensions of the micellar internal cavity coincided with those of the enzyme molecule. Some aspects of kinetic behavior of membrane-bound enzymes participating in chemical transformation of non-polar compounds dispersed in lipid phase are discussed.  相似文献   

13.
The influence of micelle hydration degree (w0) and AOT concentration on fluorescence, circular dichroism (CD), catalytic activity, and stability of catalase in Aerosol OT (AOT) reversed micelles in heptane was investigated. The quantitative parameters--differential fluorescence of catalase (DeltaI), protein molar ellipticity ([theta]lambda), initial rate of catalytic reaction, catalase efficiency (kcat/Km), and rate constant of enzyme inactivation (kin, sec-1)--decreased with increasing AOT concentration in micellar systems, reflecting the interaction of solubilized catalase with the AOT micellar aggregates in heptane. The dependences of all these parameters on increasing hydration degree of micelles (w0) were characterized by the appearance of maxima at w0 of 8, 15-18, and 26-30. These maxima are suggested to reflect three different states of catalase in the micellar system, distinguished by their conformations and catalytic activity, which is determined by the micellar microenvironment of the enzyme.  相似文献   

14.
The effect of the active bioantioxidant polydisulfide of gallic acid (PDSG) on the catalytic activity and operational and thermal stability of catalase was studied in three media: distilled water (pH approximately 5.6), phosphate buffer, pH 7.4, and reversed micelles of Aerosol OT (AOT) in heptane of varied hydration degree w0. PDSG inhibited the catalase-induced decomposition of H2O2 by the mixed or noncompetitive mechanism: in various media the inactivation constant Ki varied in the range of (0.63-2.32).10-5 M. PDSG nearly twofold decreased the rate constant of interaction of the complex I of catalase with H2O2 (k2, M-1.sec-1) in water and reversed micelles of AOT and 3-5 times increased the effective rate constant of catalase thermal inactivation, k*in, sec-1, depending on the reaction medium. PDSG significantly decreased the rate constant of catalase inactivation during the enzymatic reaction, kin, sec-1, and thus increased the enzyme operational stability in water and reversed AOT micelles in heptane. The interaction of PDSG with catalase in water and in phosphate buffer was accompanied by significant changes in CD spectra in the far UV-region that indicated disturbances in the secondary structure of catalase subunits induced by the bioantioxidant; the latter was suggested to initiate the reaction of thiol--disulfide exchange with the enzyme. The problem of the compatibility of catalase with disulfide bioantioxidants is discussed.  相似文献   

15.
Prostaglandin H synthetase solubilized in octane with the aid of hydrated reversed micelles of Aerosol OT (AOT) exhibits a catalytic activity dependent on hydration of the surface-active substance and its concentration. The maximum rate of the reaction is attained at the H2O/AOT molar ratio equal to 20 and amounts to a value close to the one observed in an aqueous solution. The inactivation rate of the enzyme in the course of the reaction does not depend on the water content in the system and is described by a Kin value commensurable with the Kin in an aqueous solution.  相似文献   

16.
The kinetics of the esterification of lauric acid by (-)menthol, catalyzed by Penicillium simplicissimum lipase, was studied in water/bis-(2-ethylhexyl)sulfosuccinate sodium salt (AOT)/isooctane microemulsions. Due to their low water content, microemulsions assist in reversing the direction of lipase activity, favoring synthetic reactions. The kinetics of this synthesis follows a Ping-Pong Bi--Bi mechanism. The values of all apparent kinetic parameters were determined. The theoretical model for the expression of enzymic activity in reverse micelles, proposed by Verhaert et al. (Verhaert, R., Hilhorst, R., Vermüe, M., Schaafsma, T. J., Veeger, C. 1990. Eur. J. Biochem. 187: 59-72) was extended to express the lipase activity in an esterification reaction involving two hydrophobic substrates in microemulsion systems. The model takes into account the partitioning of the substrates between the various phases and allows the calculation of the intrinsic kinetic constants. The experimental results showing the dependence of the initial velocity on the hydration ratio, W(o) = [H(2)O]/[AOT], of the reverse micelles, were in accordance with the theoretically predicted pattern. (c) 1993 John Wiley & Sons, Inc.  相似文献   

17.
The preparation and properties of the catalytic subunit of bovine enterokinase   总被引:10,自引:0,他引:10  
A limited reduction of the disulfide bonds of bovine enterokinase (enteropeptidase, EC 3.4.21.9) was accomplished with 50 mM dithioerythritol, at pH 9.0, and at 4 degrees C. The conditions separated the heavy and light subunits quantitatively with improved reliability when compared to the conditions used previously (Savithri, H. S., and Light, A. (1980) Biochim. Biophys. Res. Commun, 94, 360-365). Pancreatic trypsin inhibitor was added to the reaction to ensure that the yield of the heavy subunit was equal to that of the catalytic subunit (light subunit). Otherwise the heavy subunit was subject to extensive degradation. The subunits were alkylated with iodoacetate and then resolved on Sephadex G-150. Amino acid analyses and the incorporation of [14C]carboxymethyl groups showed that 3.1 carboxymethylcysteine residues were in the catalytic subunit and 8.9 in the heavy subunit. The catalytic subunit had normal catalytic activity toward N-benzoyl-L-arginine ethyl ester, enhanced activity toward N-tosyl-L-arginine methyl ester and N-tosyl-L-lysine methyl ester, and lower activity toward N-benzoyl-DL-arginine p-nitroanilide. The catalytic subunit retained the restricted specificity of intact enterokinase, but the rate of activation of trypsinogen was much slower. It is likely that the limited reduction of the disulfide bonds of the catalytic subunit altered the interaction of protein substrates with the specificity site.  相似文献   

18.
A method for recording O2 concentrations in nonconducting organic media with the Clark oxygen electrode was developed. Spontaneous oxidation of Na2S2O4 and the enzymatic reduction of NaBO3 or H2O2 by bovine liver catalase trapped in hydrated micelles of dioctylsulfosuccinate (AOT)/toluene were used as model systems. O2 titration with the above systems showed that air-saturated 1.6 M H2O/0.2 M AOT/toluene media contain seven times more O2 (1.4 mM) than aqueous solutions (0.2 mM). The measured Km values of catalase for NaBO3 and H2O2 in organic media were Kmov = 15 and 17 mM, respectively, whereas in aqueous buffer the values were 45 and 54 mM. In the toluene media, catalase activity increased with the W0 (H2O/AOT molar ratio) of the micellar preparation, reaching maximal activity at W0 = 10-12; under this condition, the catalytic center activity (Kp) of H2O2 was 7 x 10(6) min-1, similar to that obtained in the aqueous buffer (H2O2 = 7 x 10(6) min-1). It was found that the optimal pH for catalase in toluene media (pH 8.0) was shifted 1.0 unit compared to that in the aqueous buffer (pH 7.0). On the other hand, catalase was severely inhibited by NaN3 in both media. Thus, polarography based on the Clark oxygen electrode seems to be an easy, rapid, and sensitive technique for studying enzyme reactions consuming or evolving O2 in apolar media.  相似文献   

19.
Hydrolysis of N-trans-cynnamoylimidazole catalyzed by conjugates and complexes of alpha-chymotrypsin (ChT) with poly(ethylene glycol) (PEG) of different molecular mass (from 300 to 5000 daltons) was studied in the system of the hydrated reversed micelles of aerosol OT (AOT) in octane at 25 degrees C. The plot of the deacylation constant k3 for PEG--ChT conjugates and complexes versus the degree of hydration of reversed micelles (w0 = [H2O]/[AOT]) was studied. These plots are bell-shaped with maxima shifted to higher degrees of micelle hydration compared to the corresponding value of the shift for ChT. As for PEG--ChT conjugates, the value of the shift of w0 increases with increasing of molecular mass of the attached PEG and/or with the number of polymer chains per ChT molecule. Another picture was observed for PEG--ChT complexes for which the position of the maximum on k3 versusw0 curves was practically the same for all compounds. The values of the thickness of the polymer layer for PEG--ChT conjugates and complexes were calculated. Thus, polymer chains in conjugates placed in hydrated micelles are highly packed, whereas in the case of complexes they form a flat layer on the surface of the protein.  相似文献   

20.
Monomeric regulatory subunit (R) fragments of type II cAMP-dependent protein kinase were compared with the parent dimeric R. The monomeric fragments were generated by either endogenous proteolysis of rabbit muscle R or by trypsin treatment of bovine heart R in the holoenzyme form. During isolation of pure R from rabbit muscle, carboxyl-terminal fragments of Mr = 42,000 (42 K) and Mr = 37,000 by denaturing gels are generated by endogenous proteolysis. Although the autophosphorylation site is retained, the 42 K is not dimeric (as is its native 56 K precursor) but, in contrast to the monomeric 37 K product, actively reassociates with purified catalytic subunit (C). Several lines of evidence indicate a type II R origin of the 42 K. N-terminal sequence analysis of the 42 K shows some homology with known bovine RI, RII, and cGMP-dependent protein kinase sequences. Both cyclic nucleotide-binding sites (two/42 K or 37 K) and the site selectivity of cAMP analogs are retained in the monomeric fragments. When purified bovine heart holoenzyme, which contains a dimeric Mr = 56,000 R (denaturing gel analysis) and two C subunits, is treated with trypsin followed by separation procedures, the product is a fully recovered active enzyme with an unaltered ratio of cAMP binding to catalytic activity. From Mr considerations, the product is a dimer containing one intact C and a proteolyzed R of Mr = 48,000 on denaturing gels. This dimeric enzyme is not significantly different from the parent tetramer in cAMP concentration dependence (Hill constant = 1.63), [3H]cAMP dissociation behavior (both intrasubunit cAMP-binding sites are present), stimulation of [3H]cIMP binding by site-selective cAMP analogs, and synergism between two analogs in kinase activation. The data indicate that 1) proteolytic cleavage of the native R dimer can cause monomerization without appreciably affecting the inhibition of C and 2) essentially all of the cAMP binding cooperativity is an intrasubunit interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号