共查询到20条相似文献,搜索用时 15 毫秒
1.
Nuclear localization of Sindbis virus nonstructural protein nsP2 总被引:1,自引:0,他引:1
WANGXIAOZHONG MINGXIAODING 《Cell research》1993,3(1):27-37
In early infection, approximately 10% of nonstructural protein nsP2 of Sindbis virus was transported into the nuclei of virus-infected BHK-21 cells. Nuclear asP2 was dominantly associated with nuclear matrix. During the course of infection, increasing amounts of nsP2 accumulated in the nuclear fraction. A prominent accumulation of nuclear nsP2 occurred early in infection, from 1 h to 3 h postinfection. Meanwhile. a weak NTPase activity was found to be associated with the immunocomplexed nsP2. Nuclear localization of nsP2 and its possible role were diseussed in relation to the inhibition of host macromolecular synthesis. 相似文献
2.
3.
We obtained Sindbis defective-interfering particles by nine and undiluted passages of standard virus on chicken embryo fibroblasts. These particles contain a deleted 20S RNA molecule which has mRNA activity, as shown by translation in cell-free systems in vitro. In infected cells, this mRNA activity appeared to be totally inhibited except at very late times postinfection. 相似文献
4.
The identification of eight previously undescribed polypeptides in chicken embryo cells infected with Sindbis virus is reported. Seven of these polypeptides were distinguishable from the virus structural polypeptides and their precursors by their molecular weights and tryptic peptide maps. The eighth was closely related to pE2 (Schlesinger and Schlesinger, 1973), a precursor to one of the virus particle glycoproteins. Pulse-chase experiments and the use of an inhibitor of proteolytic cleavage allowed a division of the seven nonstructural (NS) polypeptides into three stable end products (NS p89, NS p82, and NS p60) and four precursors (p230, p215, p150, and p76). The labeling kinetics after synchronous initiation of translation indicated that synthesis of the NS polypeptides started at a single site and showed that the order of the genes coding for the NS polypeptides was (5' leads to 3') NS p60, NS p89, and NS p82. Short-pulse experiments under conditions of both synchronized and nonsynchronized translation suggested that cleavage of the primary translation product of the NS genes occurred only after its synthesis was completed and that the first cleavage removed the C-terminal polypeptide. From these and other experiments, we propose a detailed scheme for the synthesis and processing of Sindbis virus NS polypeptides. 相似文献
5.
Alphavirus nonstructural protein nsP1 possesses distinct methyltransferase (MTase) and guanylyltransferase (GTase) activities involved in the capping of viral RNAs. In alphaviruses, the methylation of GTP occurs before RNA transguanylation and nsP1 forms a covalent complex with m(7)GMP unlike the host mRNA guanylyltransferase which forms GMP-enzyme complex. In this study, full length SINV nsP1 was expressed in a soluble form with an N-terminal histidine tag in Escherichia coli and purified to homogeneity. The purified protein is enzymatically active and contains both MTase and GTase activity indicating that SINV nsP1 does not require membrane association for its enzymatic function. Biochemical analysis shows that detergents abolish nsP1 GTase activity, whereas nonionic detergents do not affect MTase activity. Furthermore, SINV nsP1 contains the metal-ion dependent GTase, whereas MTase does not require a metal ion. Circular dichroism spectroscopic analysis of purified protein indicate that nsP1 has a mixed α/β structure and is in the folded native conformation. 相似文献
6.
7.
S C Harrison R K Strong S Schlesinger M J Schlesinger 《Journal of molecular biology》1992,226(1):277-280
Crystals of Sindbis virus, which contains a lipid-bilayer membrane, have been grown using polyethylene glycol. The space group is R32, a = b = 640 A, c = 1520 A. The crystals are highly mosaic, and recorded diffraction is therefore restricted to spacings of about 30 A. The crystals show that the packing of glycoproteins E1 and E2 in the icosahedral outer shell is sufficiently precise that it permits regular and repeated interactions between virus particles in the lattice. Crystals of Sindbis nucleocapsids have also been grown. The limited diffraction data are consistent with close packing of nucleocapsids 404 A in diameter. 相似文献
8.
9.
Mild trypsin treatment of the Sindbis virus nucleocapsid protein yields a fragment with a molecular mass of approximately 18.5 kilodaltons with its N terminus at residue 105. The fragment, which is stable to further digestion, appears by gel exclusion chromatography to be monomeric. These data are consistent with a model for the alphavirus core proteins, consisting of an extended and flexible N-terminal arm (residues 1 to 103) and a compactly folded C-terminal domain (residues 104 to 274), as previously suggested on the basis of sequence characteristics. 相似文献
10.
Increases in ribonucleic acid (RNA) polymerase activity were detected in both the nuclear and ribosomal fractions of chick embryo cells infected with fowl-plague virus. These were observed only in the presence of all four nucleoside triphosphates and were not affected by actinomycin D. The RNA polymerase activity of the ribosomal fraction was shown to be associated with a component of infected cells of sedimentation coefficient approximately 70S. This component also contained infected cell-specific RNA and protein molecules. 相似文献
11.
12.
13.
S Nakada P N Graves U Desselberger R S Creager M Krystal P Palese 《Journal of virology》1985,56(1):221-226
The complete nucleotide sequence of RNA segment 7 of influenza C/California/78 virus was determined by using cloned cDNA derived from viral RNA. The gene is 934 nucleotides long and possesses a long open reading frame which can code for a protein of 286 amino acids. Hybrid arrest translation experiments with the cloned cDNA fragment and poly(A)-containing RNA isolated from virus-infected cells showed that a 28,500-molecular-weight protein is coded for by RNA 7. Comparison of the proteins induced in the cell-free system and in virus-infected cells with those found in purified virus suggests that the 28,500-molecular-weight protein is a nonstructural protein. 相似文献
14.
Rice dwarf phytoreovirus segment S6-encoded nonstructural protein has a cell-to-cell movement function 总被引:9,自引:0,他引:9 下载免费PDF全文
Li Y Bao YM Wei CH Kang ZS Zhong YW Mao P Wu G Chen ZL Schiemann J Nelson RS 《Journal of virology》2004,78(10):5382-5389
Rice dwarf virus (RDV) is a member of the genus Phytoreovirus, which is composed of viruses with segmented double-stranded RNA genomes. Proteins that support the intercellular movement of these viruses in the host have not been identified. Microprojectile bombardment was used to determine which open reading frames (ORFs) support intercellular movement of a heterologous virus. A plasmid containing an infectious clone of Potato virus X (PVX) defective in cell-to-cell movement and expressing either beta-glucuronidase or green fluorescent protein (GFP) was used for cobombardment with plasmids containing ORFs from RDV gene segments S1 through S12 onto leaves of Nicotiana benthamiana. Cell-to-cell movement of the movement-defective PVX was restored by cobombardment with a plasmid containing S6. In the absence of S6, no other gene segment supported movement. Identical results were obtained with Nicotiana tabacum, a host that allows fewer viruses to infect and spread within its tissue. S6 supported the cell-to-cell movement of the movement-defective PVX in sink and source leaves of N. benthamiana. A mutant S6 lacking the translation start codon did not complement the cell-to-cell movement of the movement-defective PVX. An S6 protein product (Pns6)-enhanced GFP fusion was observed near or within cell walls of epidermal cells from N. tabacum. By immunocytochemistry, unfused Pns6 was localized to plasmodesmata in rice leaves infected with RDV. S6 thus encodes a protein with characteristics identical to those of other viral proteins required for the cell-to-cell movement of their genome and therefore is likely required for the cell-to-cell movement of RDV. 相似文献
15.
16.
17.
Association of the nonstructural protein NSs of Uukuniemi virus with the 40S ribosomal subunit. 下载免费PDF全文
The small RNA segment (S segment) of Uukuniemi (UUK) virus encodes two proteins, the nucleocapsid protein (N) and a nonstructural protein (NSs), by an ambisense strategy. The function of NSs has not been elucidated for any of the bunyaviruses expressing this protein. We have now expressed the N and NSs proteins in Sf9 insect cells by using the baculovirus expression system. High yields of both proteins were obtained. A monospecific antibody was raised against gel-purified NSs and used to study the synthesis and localization of the protein in UUK virus-infected BHK21 cells. While the N protein was detected as early as 4 h postinfection (p.i.), NSs was identified only after 8 h p.i. Both proteins were still synthesized at high levels at 24 h p.i. The half-life of NSs was about 1.5 h, while that of the N protein was several hours. Sucrose gradient fractionation of [35S]methionine-labeled detergent-solubilized extracts of infected BHK21 cells indicated that NSs was firmly associated with the 40S ribosomal subunit. This association took place shortly after translation and was partially resistant to 1 M NaCl. NSs expressed by using the T7 vaccinia virus expression system, as well as in vitro-translated NSs, was also associated with the 40S subunit. In contrast, in vitro-translated N protein was found on top of the gradient. Immunolocalization of NSs, in UUK virus-infected cells, by using an affinity-purified antibody showed a granular cytoplasmic staining. A very similar pattern was seen for cells expressing NSs from a cDNA copy by using a vaccinia virus expression system. No staining was observed in the nuclei in either case. Furthermore, NSs was found neither in virions nor in nucleocapsids isolated from infected cells. In vivo labeling with 32Pi indicated that NSs is not phosphorylated. The possible function of NSs is discussed in light of these results. 相似文献
18.
The main virus-specific messenger RNA species of Sindbis virus-infected hamster cells, the “26S” RNA, has been examined with regard to methylation status. Internal methylated residues and terminal methylated residues were present, in approximately equal amounts. The internal methyl groups were almost all in 5-methylcytosine residues and the terminal methyl groups were mainly in 7-methylguanine residues. Evidence is presented that these latter occur in “capped” 5′-termini with the novel structure m7G(5′)pppNp. 相似文献
19.
BHK cells expressing Sindbis virus-induced homologous interference allow the translation of nonstructural genes of superinfecting virus. 总被引:1,自引:10,他引:1 下载免费PDF全文
The process by which Sindbis virus excludes superinfecting homologous virus was investigated with the use of temperature-sensitive mutants. Mutants in two RNA-negative complementation groups were found to be defective in their ability to establish interference at the nonpermissive temperature. These mutants were unable to establish interference in a mixed infection (complementation), suggesting that both were defective in a common gene product. Homologous interference was found to block the replication of superinfecting virus after attachment, penetration, and translation of the nonstructural genes encoded in the virus RNA. The production of nonstructural gene products of superinfecting wild-type virus was found to enhance the replication of certain RNA- temperature-sensitive interfering viruses at the permissive and the nonpermissive temperature. The ability of certain RNA- mutants to establish homologous interference and to demonstrate enhanced growth after superinfection with wild-type virus was interpreted to produce a model implicating both virus and host components in the establishment of homologous interference and in the replication of Sindbis virus RNA. 相似文献
20.
The infection of baby hamster kidney (BHK) cells by Sindbis virus gives rise to a drastic inhibition of cellular translation, while under these conditions the synthesis of viral structural proteins directed by the subgenomic 26S mRNA takes place efficiently. Here, the requirement for intact initiation factor eIF4G for the translation of this subgenomic mRNA has been examined. To this end, SV replicons that contain the protease of human immunodeficiency virus type 1 (HIV-1) or the poliovirus 2A(pro) replacing the sequences of SV glycoproteins have been constructed. BHK cells electroporated with the different RNAs synthesize protein C and the corresponding protease at late times. Notably, the proteolysis of eIF4G by both proteases has little effect on the translation of the 26S mRNA. In addition, recombinant viable SVs were engineered that encode HIV-1 PR or poliovirus 2A protease under the control of a duplicated late promoter. Viral protein synthesis at late times of infection by the recombinant viruses is slightly affected in BHK cells that contain proteolysed eIF4G. The translatability of SV genomic 49S mRNA was assayed in BHK cells infected with a recombinant virus that synthesizes luciferase and transfected with a replicon that expresses poliovirus 2Apro. Under conditions where eIF4G has been hydrolysed significantly the translation of genomic SV RNA was deeply inhibited. These findings indicate a different requirement for intact eIF4G in the translation of genomic and subgenomic SV mRNAs. Finally, the translation of the reporter gene that encodes green fluorescent protein, placed under the control of a second duplicate late promoter, is also resistant to the cleavage of eIF4G. In conclusion, despite the presence of a cap structure in the 5' end of the subgenomic SV mRNA, intact eIF4G is not necessary for its translation. 相似文献