首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dose-effect relations for stochastic rates of injury formation in cells   总被引:1,自引:0,他引:1  
The dose dependencies of lesion formation and cell survival are obtained for the imparting energy stochastic in time. It is shown that for the second-order dependence of the number of lesions on the radiation field one obtains the linear-quadratic dose dependence in the high dose range. The appearance of the linear component is related to the fluctuations and correlations of the rate of imparted energy. Expressions are obtained for cell survival in the one-target model for pulsed and prolonged irradiations.  相似文献   

2.
The activity of dilute solutions of crystalline trypsin is destroyed by x-rays. The inactivation is an exponential function of the radiation dose. The reaction yield of inactivation is independent of the intensity at which the radiation is delivered or the quality of the x-rays. The reaction yield increases with increasing concentration of trypsin, varying from 0.06 to 0.7 micromoles per liter per 1000 r for trypsin solutions ranging from 1 x 10(-7) to 2 x 10(-4)M.  相似文献   

3.
On the basis of the known photodimerization of uracil it is proposed to use its films obtained by sublimation in vacuum for the dosimetry of genetically active UV radiation. Experimental estimations are presented of radiation dose rate resulting in a change of uracil optical density delta D/D0 under irradiation due to photodimerization for erythemal lamp lo-30. The data obtained are used for dosimetry of lethal damage of Chlamydomonas reinhardii. Estimations are also presented of the sun radiation dose rate which induce uracil photodimerization on the earth surface and in the extraterrestrial atmosphere.  相似文献   

4.

To predict the biological effects of ionising radiation, the quantity of biological dose is introduced instead of the physical absorbed dose. In proton therapy, a constant relative biological effectiveness (RBE) of 1.1 is usually applied clinically as recommended by the International Commission of Radiation Units and Measurements. This study presents a new model, based on the modified microdosimetric kinetic model (MMKM), for calculating variable RBE values based on experimental data on the induction of DNA double-strand breaks (DSBs) within cells. The MMKM was proposed based on experimental data for the yield of DSBs in mammalian cells, which allows modification of the yield of primary lesions in the MKM. In this approach, a unique function named f(LET), which describes the relation between RBE and linear energy transfer (LET), was considered for charged particles. In the presented model (DMMKM), the MMKM approach was developed further by considering different f(LET)s for different relevant ions involved in energy deposition events in proton therapy. Although experimental data represent the dependence of the yield of primary lesions on the ion species, the DSB yield (assumed as the main primary lesion) is assumed independent of the ion species in the MMKM. In the DMMKM, by considering the yield of primary lesions as a function of the ion species, the α and β values are in better agreement with the experimental data as compared to those of the MKM and MMKM approaches. The biological dose in the DMMKM is predicted to be lower than that in the MMKM. Further, in the proposed model, the variation of the β parameter is higher than the constant value assumed in the MKM, at the distal end of the spread-out Bragg peak (SOBP). Moreover, the level of cell death estimated by the MMKM at the SOBP region is higher than that obtained based on the DMMKM. It is concluded that considering modified f(LET)s in the model developed here is more consistent with experimental results than when MMKM and MKM approaches are considered. The DMMKM examines the biological effects with full detail and will, therefore, be effective in improving proton therapy.

  相似文献   

5.
Single-color painting of whole chromosomes, or protocols in which only a few chromosomes are distinctively painted, will always fail to detect a proportion of complex exchanges because they frequently produce pseudosimple painting patterns that are indistinguishable from those produced by bona fide simple exchanges. When 24-color multi-fluor FISH (mFISH) was employed for the purpose of distinguishing (truly) simple from pseudosimple exchanges, it was confirmed that the acute low-LET radiation dose-response relationship for simple exchanges lacked significant upward curvature. This result has been interpreted to indicate that the formation of simple exchanges requires only one chromosome locus be damaged (e.g. broken) by radiation to initiate an exchange-not two, as classical cytogenetic theory maintains. Because a one-lesion mechanism implies single-track action, it follows that the production of simple exchanges should not be influenced by changes in dose rate. To examine this prediction, we irradiated noncycling primary human fibroblasts with graded doses of (137)Cs gamma rays at an acute dose rate of 1.10 Gy/min and compared, using mFISH, the yield of simple exchanges to that observed after exposure to the same radiation delivered at a chronic dose rate of 0.08 cGy/min. The shape of the dose response was found to be quasi-linear for both dose rates, but, counter to providing support for a one-lesion mechanism, the yield of simple aberrations was greatly reduced by protracted exposure. Although chronic doses were delivered at rates low enough to produce damage exclusively by single-track action, this did not altogether eliminate the formation of complex aberrations, an analysis of which leads to the conclusion that a single track of low-LET radiation is capable of inducing complex exchanges requiring up to four proximate breaks for their formation. For acute exposures, the ratio of simple reciprocal translocations to simple dicentrics was near unity.  相似文献   

6.
光复活对紫外线照射大肠杆菌后突变率的影响   总被引:1,自引:1,他引:0  
通过改变UV照射时间、照射后的操作速度、光复活时的温度、时间和光强度,以光复活和暗处理后细胞存活数的比值为依据,研究了不同条件下E.coli受UV照射后的光复活效应。并以E.coli对5μg/ml链霉素抗性突变率为指标,比较了不同剂量UV照射后光复活和暗处理对E.coli突变率的影响。结果表明:光复活效应在温度10℃时最明显,且与照射时间、照射后的操作速度、光复活时间和光强度成正相关;在中、低剂量UV照射后,暗处理较光复活后E.coli对链霉素抗性突变率明显高,而在高剂量下,光复活则显著高于暗处理后的突变率。  相似文献   

7.
Somatic effects of radiation intensity on the mutable V and stable R genes were detected in plants of a heterozygous clone (v(S3)/v(s), R/r) subjected to the same dose at four rates. The effects were compared by counting speckled and purple sectors in flowers from irradiated and control plants. Response curves were estimated from the mutant sector averages, observed over a period of transient response for successive mature flowers. A structure for integrating the mutational contributions from different flowers was provided by models. The average control mutation rates are 8,110 per 10(7) cells for the V gene, and 49.45 for R. At a constant intensity of 4320 roentgens/hour, average induced mutation rates per 10(7) cells per roentgen for V increase from 194 (at 24 r total dose) to 1,116 (at 3 r dose); the corresponding rates for R increase from 7.24 to 27.65. With these responses as standards, both genes at corresponding total doses yield lower rates at lower intensities. For the series of intensities 1.2, 0.6, 0.3 and 0.15 roentgens/hour, the decreases in mutation rate for the V gene are, respectively, 66, 148, 315, and 617 per 10(7) cells per roentgen. The corresponding decrements for R are 4.86, 8.70, 14.61, and 23.51. These effects are non-linear functions of intensity for both genes, but V is at least 13 times as sensitive as R. Radiation operating to extinguish a buffering system against final mutation can account for the dose and dose-rate effects observed.  相似文献   

8.
9.
The ability of CFUdc to repair radiation-induced lesions in the irradiated body was studied by the methods of dose fractionation and dose-rate reduction. With the dose-rate decreased from 1-0.5 Gy/min to 0.02 Gy/min, a mean lethal dose per cell increased from 1.35 up to 1.93 Gy. With fractionation of the dose, the known picture of repair of sublethal radiation lesions was obtained the second survival peak being insignificant. The authors discuss the possible causes of the distinctions in the repair parameters of CFUdc obtained by the two methods.  相似文献   

10.
The risk of a radiation episode has increased in the last years due to several reasons. In case of a nuclear incident, as with the use of an improvised nuclear device, determination of the radiation doses received by the victims is of utmost importance to define the appropriate medical treatment or to monitor the late effects of radiation. Dose assessment in case of accidents can be performed using commonplace materials found in the accident area. In this paper, the dosimetric properties of monosodium glutamate are investigated by electron spin resonance spectroscopy (ESR), for retrospective and accidental dosimetry. The spectroscopic parameters were optimized to achieve higher signal intensity and better signal-to-noise ratio. As a result, the lowest detectable dose was 0.1 Gy, and monosodium glutamate showed a linear dose–response curve for doses ranging from 0.1 Gy to 10 kGy. The dosimetric signal was monitored from minutes right after irradiation, until 1 year. No changes in the signal intensity were observed over this period, meaning that doses could be assessed immediately after radiation exposure and can still be reconstructed long after the accident. This property also implies that late effects due to victim’s radiation exposure could be better monitored and understood. ESR signal intensity for samples irradiated with a photon energy below 100 keV was decreased by only 27% and no dose-rate dependence was noticed. Therefore, the ability to measure doses as low as 0.1 Gy, the high stability of the dosimetric signal, as well as independence on dose rate, tissue equivalence, low-cost, and wide commercial availability make monosodium glutamate a very good dosimetric material not only for retrospective and accidental but also for medical dosimetry.  相似文献   

11.
The lethal and mutagenic effects of ionizing radiation delivered at high (53 Gy/h) and low (0.02 Gy/h) dose rates were measured in two closely related strains of mouse lymphoma L5178Y cells differing in radiation sensitivity (LY-R and LY-S). Strain LY-R was more resistant to the lethal effects of radiation than strain LY-S when exposed at either the high or low dose rate. The survival of strain LY-R was markedly enhanced by the reduction in dose rate. The dose-rate dependence of the survival of strain LY-S was less clear, because of the biphasic nature of its survival curve following low dose-rate radiation. However, if the initial slope of the low dose-rate survival curve is compared to the slope of the high dose-rate survival curve for strain LY-S, only a slight increase in survival at the low dose rate is apparent. Although more sensitive to the lethal effects of radiation, strain LY-S was less mutable at the hypoxanthine/guanine phosphoribosyl transferase locus by both low dose-rate and high dose-rate radiation than strain LY-R. Little dose-rate dependence was exhibited by either strain with regard to the mutagenic effects of radiation. Thus, for strain LY-R, which showed marked dose-rate dependence for survival but not for mutation, the ratio of mutational to lethal lesions was much greater following exposure to low dose-rate than to high dose-rate radiation.  相似文献   

12.
The frequency of reciprocal translocations in mice spermatogonia after the exposure to chronic gamma-irradiation at doses of 100, 200, 300, 600, 920 r, at the dose rate of 4,2 r/day was investigated. It was shown that the mutation frequency increased insignificantly with the increase of the radiation dose (y =0,8+0.0011x). The comparison of the data obtained with earlier results revealed no changes in the yield of translocations at the reduction of the dose rate from 10 r/day to 4,2 r/day. The investigation of the genetic radiosensitivity of mice spermatogonia after a chronic gamma-irradiation showed a tendency to increase in their radioresistance.  相似文献   

13.
Pinto M  Howell RW 《BioTechniques》2007,43(1):64, 66-64, 71
Targeted therapies result in heterogeneous drug delivery, often with highly variable drug uptake in the targeted cells and significant numbers of cells that are essentially untargeted. However both the variably targeted cells and neighboring bystander cells may respond to the treatment. Using ionizing radiation as an example of a targeted therapeutic agent, we describe a quantitative immunofluorescence-based approach for concomitant quantification of exposure and measurement of biological responses in both targeted and bystander cells. Cultures of human skin fibroblasts are co-pulse-labeled with 3H-deoxycytidine (3H-dC) and bromodeoxyuridine (BrdU). The labeled cells, identified by BrdU immunofluorescence, are internally irradiated by low-energy beta-particles emitted by incorporated 3H-dC. BrdU immunofluorescence intensity is proportional to radioactivity incorporated and, therefore, to radiation dose rate. Cell-cycle arrest in G2 is measured in labeled cells as function of dose rate. Stress responses in bystander cells, indicated by a G1 checkpoint, are concomitantly measured with a flow cytometric-cumulative labeling index (FCM-CLI) assay. The overall approach presented herein may be useful in the context of evaluating responses to targeted drug delivery.  相似文献   

14.
Summary The induction of unstable chromosome aberrations in human peripheral blood lymphocytes exposed in vitro to protracted doses of cobalt-60 radiation is presented. Four dose response curves have been produced using constant exposure times of 1, 3, 6, and 12 h. The data fit well to the linear quadratic model and the yield coefficients have been compared with those obtained for acute (< 10 min) exposure. The quadratic coefficient is dependent on irradiation time and decreases approximately as predicted by Lea and Catcheside'sG-function hypothesis. The possibility of a small proportion of much longer lived breaks is discussed. For purposes of biological dosimetry it is sufficient to assume a mean time of 2 h and a single exponential function for the repair of lesions when relating the effects of brief and protracted exposure.  相似文献   

15.
The induction of mutants at the heterozygous tk locus by X radiation was found to be dose-rate dependent in L5178Y-R16 (LY-R16) cells, but very little dose-rate dependence was observed in the case of strain L5178Y-S1 (LY-S1), which is deficient in the repair of DNA double-strand breaks. Induction of mutants by X radiation at the hemizygous hprt locus was dose-rate independent for both strains. These results are in agreement with the hypothesis that the majority of X-radiation-induced TK-/- mutants harbor multilocus deletions caused by the interaction of damaged DNA sites. Repair of DNA lesions during low-dose-rate X irradiation would be expected to reduce the probability of lesion interaction. The results suggest that in contrast to the TK-/- mutants, the majority of mutations at the hprt locus in these strains of L5178Y cells are caused by single lesions subject to dose-rate-independent repair. The vast majority of the TK-/- mutants of strain LY-R16 showed loss of the entire active tk allele, whether the mutants arose spontaneously or were induced by high-dose-rate or low-dose-rate X irradiation. The proportion of TK-/- mutants with multilocus deletions (in which the products of both the tk gene and the closely linked gk gene were inactivated) was higher in the repair-deficient strain LY-S1 than in strain LY-R16. However, even though the mutant frequency decreased with dose rate, the proportion of mutants showing inactivation of both the tk and gk genes increased with a decrease in dose rate. The reason for these apparently conflicting results concerning the effect of DNA repair on the induction of extended lesions is under investigation.  相似文献   

16.
A study was made of the dose dependence of the chromosome aberration frequency in human lymphocytes exposed to 60Co-gamma radiation and neutrons (mean energy of 0.85 MeV) at the G0 stage and in different periods of the G1 and G1/S stages of the cycle. With gamma irradiation the dose dependence for cells at the G1 and G1/S stages was at a higher level than that for cells at the G0 stage, whereas the opposite picture was observed for cells exposed to neutron radiation. The difference was also noted in the time-response curves where gamma radiation increased and neutrons, on the contrary, decreased the aberration yield in the cells that passed from G0 to G1 stage. The experimental data obtained are attributed to activation of repair system at the G1 stage which is mainly conditioned by chromatin decondensation; the activating, that is, the functional factor influences the aberration induction with gamma irradiation, while the decondensation, that is, the structural factor, with neutron irradiation.  相似文献   

17.
The theory of dual radiation action (A. M. Kellerer and H. H. Rossi, Curr. Top. Radiat. Res. Q. 8, 85-158, 1972) has attributed the effects of ionizing radiation on eukaryotes to the production of molecular changes (sublesions) that combine pairwise to produce injury (lesions) responsible for radiation effects. If the yield of sublesions is independent of radiation quality (as is currently assumed), dual radiation action results in the well-known proportionality between the average yield of lesions and alpha D+beta D2, where beta is a radiation-independent quantity. It has, however, been observed that beta changes with radiation type. In this paper we propose an explanation of this discrepancy. Specifically, we suggest that dual radiation action-type processes where beta is variable are the result of a mechanism--termed compound dual radiation action--which consists of a sequence of simple dual radiation action processes, each process being the causative agent for the next one. The sequence, single-strand DNA breaks, double-strand DNA breaks (chromosome breaks), and exchange-type chromosomal aberrations, is one such example examined in the paper.  相似文献   

18.
The halophilic archaeon Halobacterium salinarum NRC-1 was used as a model system to investigate cellular damage induced by exposure to high doses of ionizing radiation (IR). Oxidative damages are the main lesions from IR and result from free radicals production via radiolysis of water. This is the first study to quantify DNA base modification in a prokaryote, revealing a direct relationship between yield of DNA lesions and IR dose. Most importantly, our data demonstrate the significance of DNA radiation damage other than strand breaks on cell survival. We also report the first in vivo evidence of reactive oxygen species scavenging by intracellular halides in H. salinarum NRC-1, resulting in increased protection against nucleotide modification and carbonylation of protein residues. Bromide ions, which are highly reactive with hydroxyl radicals, provided the greatest protection to cellular macromolecules. Modified DNA bases were repaired in 2 h post irradiation, indicating effective DNA repair systems. In addition, measurements of H. salinarum NRC-1 cell interior revealed a high Mn/Fe ratio similar to that of Deinococcus radiodurans and other radiation-resistant microorganisms, which has been shown to provide a measure of protection for proteins against oxidative damage. The work presented here supports previous studies showing that radiation resistance is the product of mechanisms for cellular protection and detoxification, as well as for the repair of oxidative damage to cellular macromolecules. The finding that not only Mn/Fe but also the presence of halides can decrease the oxidative damage to DNA and proteins emphasizes the significance of the intracellular milieu in determining microbial radiation resistance.  相似文献   

19.
The induction of reciprocal translocations in rhesus monkey stem-cell spermatogonia was studied using multivalent analysis at metaphase of primary spermatocytes. Animals were exposed to 1 Gy gamma-rays at dose rates of 140 and 0.2 mGy/min or to 0.25 Gy acute 2 MeV neutrons. Reduction of the dose rate from 140 mGy/min to 0.2 mGy/min did not result in a lowering of the frequencies of recovered translocations of 0.43%. The neutron data indicated an RBE (neutrons vs. X-rays) of 2.1, which is clearly lower than the value of 4 obtained in the mouse. It is made plausible that in general mammalian species with high sensitivities for the cytotoxic effects of ionizing radiation, such as the rhesus monkey, will exhibit relatively high threshold dose rates below which no further reduction in aberration yield occurs, whereas in more resistant species, such as the mouse, the threshold dose rate will be at a very low level. Similarly, resistant species will show relatively high RBE values for neutron irradiation and sensitive species low ones.  相似文献   

20.
We present a new approach to model dose rate effects on cell killing after photon radiation based on the spatio-temporal clustering of DNA double strand breaks (DSBs) within higher order chromatin structures of approximately 1–2 Mbp size, so called giant loops. The main concept of this approach consists of a distinction of two classes of lesions, isolated and clustered DSBs, characterized by the number of double strand breaks induced in a giant loop. We assume a low lethality and fast component of repair for isolated DSBs and a high lethality and slow component of repair for clustered DSBs. With appropriate rates, the temporal transition between the different lesion classes is expressed in terms of five differential equations. These allow formulating the dynamics involved in the competition of damage induction and repair for arbitrary dose rates and fractionation schemes. Final cell survival probabilities are computable with a cell line specific set of three parameters: The lethality for isolated DSBs, the lethality for clustered DSBs and the half-life time of isolated DSBs.By comparison with larger sets of published experimental data it is demonstrated that the model describes the cell line dependent response to treatments using either continuous irradiation at a constant dose rate or to split dose irradiation well. Furthermore, an analytic investigation of the formulation concerning single fraction treatments with constant dose rates in the limiting cases of extremely high or low dose rates is presented. The approach is consistent with the Linear-Quadratic model extended by the Lea-Catcheside factor up to the second moment in dose. Finally, it is shown that the model correctly predicts empirical findings about the dose rate dependence of incidence probabilities for deterministic radiation effects like pneumonitis and the bone marrow syndrome. These findings further support the general concepts on which the approach is based.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号