首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 78 毫秒
1.
《Acta Botanica Sinica》2009,(5):433-436
Hu and Schmidhalter (2008) conducted a study with wheat seedlings growing in saline and non-stressed (control) conditions with the aim of identifying and quantifying the cellular basis for the reduction in leaf growth. We applaud their goals as salinity is an important issue for plant ecology and food production; however, we have concerns about the methodology used and the subsequent conclusJons that are drawn.  相似文献   

2.
It has been shown that virus infections, often symptomless, significantly limit sweetpotato productivity, especially in regions characterized by low input agricultural systems. In sweetpotatoes, the successful emergence and development of lateral roots (LRs), the main determinant of root architecture, determines the competency of adventitious roots to undergo storage root initiation. This study aimed to investigate the effect of some plant viruses on root architecture attributes during the onset of storage root initiation in ‘Beauregard’ sweetpotatoes that were grown with or without the presence of nitrogen. In two replicate experiments, virus-tested plants consistently failed to show visible symptoms at 20 days regardless of nitrogen treatment. In both experiments, the severity of symptom development among infected plants ranged from 25 to 118% when compared to the controls (virus tested plants grown in the presence of nitrogen). The presence of a complex of viruses (Sweet potato feathery mottle virus, Sweet potato virus G, Sweet potato virus C, and Sweet potato virus 2) was associated with 51% reduction in adventitious root number among plants grown without nitrogen. The effect of virus treatments on first order LR development depended on the presence or absence of nitrogen. In the presence of nitrogen, only plants infected with Sweet potato chlorotic stunt virus showed reductions in first order LR length, number, and density, which were decreased by 33%, 12%, and 11%, respectively, when compared to the controls. In the absence of nitrogen, virus tested and infected plants manifested significant reductions for all first order LR attributes. These results provide evidence that virus infection directly influences sweetpotato yield potential by reducing both the number of adventitious roots and LR development. These findings provide a framework for understanding how virus infection reduces sweetpotato yield and could lead to the development of novel strategies to mitigate virus effects on sweetpotato productivity.  相似文献   

3.
In the present study, the relationship between the nutritional status of leaves and the development of symptoms of cotton leaf curl virus (CLCuV) in two cotton (Gossypium hirsutum L.) cultivars (i.e. CIM-240 and S-12) was investigated. The incidence of disease attack was found to be 100% in the S-12 cultivar and 16% in the CIM-240 cultivar. Geminivirus particles in infected leaves were confirmed by transmission electron microscope examination of highly specific geminivirus coat protein antisera-treated cell sap. The CLCuV impaired the accumulation of different nutrients in both cultivars. A marked decrease in the accumulation of Ca2+ and K+ was observed in infected leaves. However, the disease had no effect on leaf concentrations of Na+, N, and P. It was observed that the curling of leaf margins in CLCuV-infected plants was associated with the leaf Ca2+ content; leaf curling was severe in plants with a significant reduction in Ca2+ content.Moreover, leaf K+ content was found to be associated with resistance/susceptibility to CLCuV infection.  相似文献   

4.
Eight cultivars/lines of Gossypium hirsutum (CIM-443, CIM-448, CIM-1100, FH-634, S-111, S-113, Cedix, and LRA 5166) resistant to cotton leaf curl virus (CLCuV), one moderately-resistant (cv. NIAB-Krishma), and one susceptible (cv. S-12) were used. All the resistant lines remained free of all disease symptoms, whereas in moderately-resistant and susceptible cvs. leaf curling and vein thickening occurred. Cultivars with varying degree of CLCuV-resistance had different pattern of accumulation of macronutrients. Leaf N content was lowest in S-12, but increased considerably due to disease. Leaf K and Ca contents of S-12 were lower in the diseased leaves than in healthy ones. Chlorophyll a and b contents were highest in lines S-111, S-113 and S-12. A marked reduction in chlorophyll b content was observed in the diseased leaves of S-12. Leaf water potential in S-12 and NIAB-Krishma was also decreased due to disease. The most distinctive characteristic to differentiate between lines was epicuticular wax content, since all the resistant lines had considerably higher wax content on their leaf surfaces than the moderately-resistant or susceptible cultivars. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Bondada  B.R.  Oosterhuis  D.M. 《Photosynthetica》1998,35(4):631-635
Relationships between leaf nitrogen (N) content and leaf gas exchange components of a single cotton (Gossypium hirsutum L.) leaf subtending the fruit during ontogeny were investigated under field conditions. A 20-d old leaf exhibited the highest physiological activity characterized by net photosynthetic (PN) and transpiration (E) rates, stomatal conductances to CO2 exchange (gsCO2) and water vapor transfer (gsH2O), and nitrogen (N) content. With the advent of leaf senescence, the gas exchange rates declined as exhibited by the 30-, 40-, and 60-d old leaves. Regression analysis indicated close relationships between gsCO2 and PN, and gsH2O and E as the leaves advanced towards senescence. Both PN and gsCO2 were related to N as they declined with leaf age. Thus, the declines in PN were associated with stomatal closure and removal of N during leaf ontogeny.  相似文献   

6.
以番茄为试验材料,研究番茄黄化曲叶病毒(TYLCV)侵染对植株叶片叶绿素含量、净光合速率、气孔导度、胞间CO2浓度和叶绿体超微结构的影响.结果表明:TYLCV侵染番茄后,叶片叶绿素a、b以及总叶绿素含量分别下降50.2%、24.19%和43.84%,叶片净光合速率和气孔导度分别下降43.28%、27.07%,胞间CO2浓度增加13.04%.与健康叶片相比,叶绿体变形,叶绿体基质片层大部分消解,基粒结构消失,叶绿体外膜和内膜剥离,质壁分离和细胞膜内陷,细胞器消解.研究表明,TYLCV侵染破坏了番茄叶片的叶绿体结构,严重影响番茄叶片的光合作用.  相似文献   

7.
Reports on the genetic variability and evolution of natural populations of DNA viruses are scarce in comparison with the abundant information on the variability of RNA viruses. Geminiviruses are plant viruses with circular ssDNA genomes that are replicated by the host plant DNA polymerases. Whitefly-transmitted geminiviruses (WTG) are the agents of important diseases of crop plants and best exemplify emerging plant viruses. In this report we have analyzed the genetic diversity of cotton leaf curl geminivirus (CLCuV), a typical emerging WTG. No genetic differentiation was observed between isolates from different host plant species or geographic regions. Thus, the analyzed isolates represented a unique, undifferentiated population. Genetic variability, estimated as nucleotide diversities at synonymous positions in open reading frames (ORFs) for the AC1 (=replication) protein and coat protein (CP = AV1), was very high, exceeding the values reported for different genes in several plant and animal RNA viruses. This was unexpected in a virus that uses the DNA replication machinery of its eukaryotic host. Diversities at nonsynonymous positions, on the other hand, indicated that variability may be constrained in the genome of CLCuV. The ratio of nonsynonymous-to-synonymous substitutions varied for the different ORFs: they were higher for CP than for AC1 and lower still for the AC4 and AV2 ORFs, which overlap AC1 and CP ORFs, respectively. Analysis of nucleotide diversities at synonymous and nonsynonymous positions of the AC4 and AV2 ORFs suggest that their evolution is constrained by AC1 and CP, respectively. Data suggest that AC4 and AV2 are new genes that may have originated by overprinting on the preexistent AC1 and CP genes. Evidence for recombination was found for the AC1 and CP ORFs and for the noncoding intergenic region (IR). Data indicate that the origin of replication is a major recombination point in the IR, but not the only one. Analyses of the IR also suggest that recombinants may be frequent in the population and that recombination may have an important role in the generation of CLCuV variability. Received: 26 February 1999 / Accepted: 31 May 1999  相似文献   

8.
Free and membrane-bound forms of Calvin-cycle multienzyme complexes with a mol wt of 520 ± 20 kD and 640 ± 25 kD, respectively, were isolated from the cotton (Gossypium hirsutum L.) leaves. Both complexes exhibited the following enzymatic activities: ribose phosphate isomerase, phosphoribulokinase, ribulose bisphosphate carboxylase (Rubisco), phosphoglycerate kinase, and glyceraldehyde phosphate dehydrogenase. The activities of the membrane-bound multienzyme complex were significantly higher than the activities of the free complex. This difference was especially pronounced in the case of carboxylase activity. An increase in the enzymatic activity of membrane-bound multienzyme complex in comparison with the free complex is presumably due to the different number of their constituent parts. Another possible cause is the membrane-level regulation of the functional activity of the enzymes composing the complex.  相似文献   

9.
Salt Tolerance of Cotton: Some New Advances   总被引:5,自引:0,他引:5  
Referee: Dr. Lin Wu, Department of Environmental Horticulture, University of California, Davis, Davis, CA 95616 Cotton is a dual-purpose crop, widely used for fiber and oil purposes throughout the world. It is placed in the moderately salt-tolerant group of plant species with a salinity threshold level 7.7?dS m?1, its growth and seed yield being severely reduced at high salinity levels and different salts affect the cotton growth to a variable extent. However, inter- and intraspecific variation for cotton salt tolerance in cotton is considerable and thus can be exploited through specific selection and breeding for enhancing salt tolerance of the crop. There are contrasting reports regarding the crop response to salinity at different plant growth stages, but in most of them it is evident that the crop maintains its degree of salt tolerance consistently throughout its entire developmental phases. In the latter case an effective selection for salt tolerance is possible to be made at any growth stage of the crop. The pattern of uptake and accumulation of toxic ions (Na+ and/or Cl?) in tissues of plants subjected to saline conditions appears to be due mostly to the mechanism of partial ion exclusion (exclusion of Na+ and/or Cl?) in cotton. Maintenance of high tissue K/Na and Ca/Na ratios is suggested to be an important selection criterion for salt tolerance in cotton. While judging the appropriate mechanism of ion transport across the membranes in view of existing literature, it was evident that the PM-ATPase responds to increasing supply of Na+ in the growth medium, but the activity of the transport proteins on the plasma membrane alone were insufficient to regulate intracellular Na+ levels. Vacuolar-ATPase is also not responsive to increased external Na+. The inability of V-ATPase to respond to Na+ gave indication of the lack of effective driving force for compartmentalization of Na+ in cotton. However, in view of some latest studies concenrning the role of some antioxidants in salt tolerance of cotton it was suggested that high levels of antioxidants and an active ascorbate-glutathione cycle are associated with salt tolerance in cotton. Genetic studies with cotton in relation to salinity tolerance exhibited that most of growth, yield, and fiber characteristics are genetically based and most being QTL controlled and variable. The high additive component of variation can be exploited for breeding to produce further improvement in the salt tolerance of cotton.  相似文献   

10.
将棉花生长素结合蛋白基因cDNA与CaMV35S启动子和NOS终止子融合,构建了一个新的表达载体pGABPl—121,采用农杆菌介导法转化烟草,经过分化、筛选和再生,得到了具有卡那霉素抗性的植株。抗性植株经PCR及Southern杂交检测,证明外源目的基因已经整合到烟草基因组中。扫描电镜观察发现转基因烟草与对照相比叶细胞增大,结果表明,棉花生长素结合蛋白基因的表达影响了烟草叶细胞的发育。  相似文献   

11.
将棉花生长素结合蛋白基因cDNA与CaMV35S启动子和NOS终止子融合,构建了一个新的表达载体pGABP1-121,采用农杆菌介导法转化烟草,经过分化、筛选和再生,得到了具有卡那霉素抗性的植株。抗性植株经PCR及Southern杂交检测,证明外源目的基因已经整合到烟草基因组中。扫描电镜观察发现转基因烟草与对照相比叶细胞增大,结果表明,棉花生长素结合蛋白基因的表达影响了烟草叶细胞的发育。  相似文献   

12.
The effect of nitrogen (N) fertility and its subsequent impact on ethylene production varies with plant species. Additionally, ethylene production reportedly increases or decreases with leaf age for several species. We examined leaf age and N fertility effects on ethylene production of cotton (Gossypium hirsutum L.) during the early vegetative stages of development (14 to 42 days after emergence) in a controlled environment. Ethylene production was determined by sampling leaf discs from the topmost fully expanded, middle, and bottom leaves of the canopy at 14, 21, 28, 35, and 42 days after emergence. Ethylene was collected from leaf discs in sealed test tubes and quantified by gas chromatography. Early in development, a N deficiency was associated with elevated levels of ethylene, suggesting stress ethylene production was occurring in response to a N-deficiency stress. As plant development progressed, however, increased ethylene production was associated with higher levels of applied N. Additionally, higher ethylene production was linearly associated with higher chlorophyll levels in all three leaves sampled. Ethylene production within plants receiving any given rate of N initially increased and then decreased with leaf age. The dynamics of this relationship suggest that as the N status of the plant changes during plant development, the relative rate of ethylene production, with regard to leaf age, is significantly influenced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号