首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Because of its common negative association with fitness, inbreeding is a major concern in conservation biology. Traditionally it has been measured as individual inbreeding coefficient calculated from the pedigree, but recently multilocus heterozygosity estimates have become commonly used as proxies. However, theoretical and simulation studies have cast doubt on the validity of these surrogates especially when they are based on only a few molecular markers. Yet, empirical studies reporting the correlation between multilocus heterozygosity and inbreeding coefficient are rare. We studied this relationship in a wild Siberian jay (Perisoreus infaustus) population subject to a long-term field study over 30 years. The correlations between inbreeding coefficient and the employed heterozygosity measures—standardized heterozygosity and internal relatedness—based on 21 microsatellite loci were weak. These results together with results from theoretical and simulation studies caution against use of multilocus heterozygosity estimates to study inbreeding in natural populations.  相似文献   

2.
The relationship between inbreeding depression and inbreeding coefficient (F) for several important traits was investigated in an 11-year trial of maritime pine (Pinus pinaster). Five levels of inbreeding (F=0; 0.125; 0.25; 0.5; 0.75) were obtained in a mating design involving ten plus-trees, or their progenies, as parents (total of 51 families). For F=0.75, the mean inbreeding depressions were 27% for height, 37% for circumference at breast height (63% for bole volume), 23% for basal straightness (better straightness of the inbred trees), and 89% for female fertility (number of cones). Large differences were observed among inbred families for the same level of inbreeding. The evolution of depression with F was more or less linear, depending on the traits. Significant differences among F-levels appeared very early for height (from 5-years of age). Inbreeding depression was much more expressed during unfavorable years than during favorable years for yearly height growth. When compared with other Pinus species, maritime pine appears to be less affected by inbreeding, especially for the percentage of filled seeds and general vigor. A reduced genetic load in maritime pine may result from the evolutionary history of the species and its scattered distribution.  相似文献   

3.
Summary This experiment was designed to study the relationship between rate of inbreeding and observed inbreeding depression of larval viability, adult fecundity and cold shock mortality in Drosophila melanogaster. Rates of inbreeding used were full-sib mating and closed lines of N=4 and N=20. Eight generations of mating in the N=20 lines, three generations in the N=4 lines and one generation of full-sib mating were synchronised to simultaneously produce individuals with an expected level of inbreeding coefficient (F) of approximately 0.25. Inbreeding depression for the three traits was significant at F=0.25. N=20 lines showed significantly less inbreeding depression than full-sib mated lines for larval viability at approximately the same level of F. A similar trend was observed for fecundity. No effect of rate of inbreeding depression was found for cold shock mortality, but this trait was measured with less precision than the other two. Natural selection acting on loci influencing larval viability and fecundity during the process of inbreeding could explain these results. Selection is expected to be more effective with slow rates of inbreeding because there are more generations and greater opportunity for selection to act before F=0.25 is reached. Selection intensities seem to have been different in the three traits measured. Selection was most intense for larval viability, less intense for fecundity and, perhaps, negligible at loci influencing cold shock mortality.  相似文献   

4.
Mating system and inbreeding depression in quantitative traits of whitebark pine (Pinus albicaulis Engelm.) was determined using isozymes and a seedling common garden experiment. Simultaneous isozyme analysis of embryo and haploid megagametophyes from progeny arrays of families in three distinct geographic regions (Oregon, Montana, and southern British Columbia) was used to estimate parental and progeny inbreeding coefficients, as well as regional and family mean multilocus outcrossing rates (t m). Quantitative trait family means of seedlings from the same families growing in two temperature treatments in a common garden experiment were regressed on the estimated inbreeding coefficient to determine the presence and magnitude of inbreeding depression. Regional estimates of t m ranged from 0.73 to 0.93, with a mean over all regions of 0.86. Family mean t m values indicated predominant outcrossing; however, some individuals experienced substantial inbreeding. The Oregon region had a significant excess of heterozygotes in the parental generation relative to Hardy–Weinberg equilibrium, while both the Oregon and southern BC regions had a heterozygote deficiency in progeny, suggesting selection against inbred individuals. Biomass in the ambient temperature treatment for the southern BC region was the only trait significantly related to inbreeding coefficient. The mean inbreeding coefficient for this region was 0.25, and based on this relationship, mean predicted biomass would be reduced by 19.6% in this region if inbred individuals are not removed by selection. The estimated outcrossing rate of whitebark pine is slightly lower than most wind-pollinated conifers, and while most individuals are highly outcrossing, some experience substantial inbreeding.  相似文献   

5.
Heterozygosity–fitness correlations use molecular measures of heterozygosity as proxy estimates of individual inbreeding coefficients (f) to examine relationships between inbreeding and fitness traits. Heterozygosity–fitness correlations partly depend on the assumption that individual heterozygosity and f are strongly and negatively correlated. Although theory predicts that this relationship will be strongest when mean f and variance in f are high, few studies of heterozygosity–fitness correlations include estimates of f based on pedigrees, which allow for more thorough examinations of the relationship between f, heterozygosity and fitness in nature. We examined relationships between pedigree‐based estimates of f, multilocus heterozygosity (MLH) and the probability of survival to hatch in song sparrow nestmates. f and MLH were weakly, but significantly negatively correlated. Inbreeding coefficient predicted the probability of survival to hatch. In contrast, MLH did not predict the probability of survival to hatch nor did it account for residual variation in survival to hatch after statistically controlling for the effects of f. These results are consistent with the expectation that heterozygosity–f correlations will be weak when mean and variance in f are low. Our results also provide empirical support for recent simulation studies, which show that variation in MLH among siblings with equal f can be large and may obscure MLH–fitness relationships.  相似文献   

6.
Inbreeding can affect fitness‐related traits at different life history stages and may interact with environmental variation to induce even larger effects. We used genetic parentage assignment based on 22 microsatellite loci to determine a 25 year long pedigree for a newly established island population of moose with 20–40 reproducing individuals annually. We used the pedigree to calculate individual inbreeding coefficients and examined for effects of individual inbreeding (f) and heterozygosity on fitness‐related traits. We found negative effects of f on birth date, calf body mass and twinning rate. The relationship between f and calf body mass and twinning rate were found to be separate but weaker after accounting for birth date. We found no support for an inbreeding effect on the age‐specific lifetime reproductive success of females. The influence of f on birth date was related to climatic conditions during the spring prior to birth, indicating that calves with a low f were born earlier after a cold spring than calves with high f. In years with a warm spring, calf f did not affect birth date. The results suggest that severe inbreeding in moose has both indirect effects on fitness through delayed birth and lower juvenile body mass, as well as separate direct effects, as there still was a significant relationship between f and twinning rate after accounting for birth date and body mass as calf. Consequently, severe inbreeding as found in the study population may have consequences for population growth and extinction risk.  相似文献   

7.
Inbreeding depression is one of the major selective forces driving the evolution of mating systems. Previous theories predict that long-lived plants will show a negative correlation between inbreeding depression and the level of inbreeding (as determined by an inbreeding coefficient) at maturity, but the extent of this correlation may vary among life stages because of variation in the genetic basis for inbreeding depression at different stages. To test this prediction, I used electrophoretic allozyme analysis and pollination experiments to examine the fixation index (F is) at maturity and inbreeding depression in the early and late life stages of two populations with different outcrossing rates of a highly self-fertilizing tree, Magnolia obovata. The magnitude of inbreeding depression for early survival (δ e) in an outcrossing population (t m = 0.51; F is = −0.015) was higher (δ e = 0.97) than that in an inbreeding population (t m = 0.18; F is = 0.15; δ e = 0.38). From these results, I estimated that both populations exhibited high inbreeding depression for late survival (δ l) (0.94 in the outcrossing population and 0.93 in the inbreeding one) and lifetime survival (δ t) (0.99 and 0.96, respectively). My results and previously published data demonstrate the predicted relationship between inbreeding depression and the level of inbreeding for early survival, but not for late survival. This suggests that there is a differential genetic basis for inbreeding depression at different life stages. The inbreeding depression for late survival appears to play a central role in the maintenance of reproductive traits that promote outcrossing in M. obovata.  相似文献   

8.
Inbreeding depression, the reduced fitness of offspring of closely related parents, is commonplace in both captive and wild populations and has important consequences for conservation and mating system evolution. However, because of the difficulty of collecting pedigree and life‐history data from wild populations, relatively few studies have been able to compare inbreeding depression for traits at different points in the life cycle. Moreover, pedigrees give the expected proportion of the genome that is identical by descent (IBDg) whereas in theory with enough molecular markers realized IBDg can be quantified directly. We therefore investigated inbreeding depression for multiple life‐history traits in a wild population of banded mongooses using pedigree‐based inbreeding coefficients (fped) and standardized multilocus heterozygosity (sMLH) measured at 35–43 microsatellites. Within an information theoretic framework, we evaluated support for either fped or sMLH as inbreeding terms and used sequential regression to determine whether the residuals of sMLH on fped explain fitness variation above and beyond fped. We found no evidence of inbreeding depression for survival, either before or after nutritional independence. By contrast, inbreeding was negatively associated with two quality‐related traits, yearling body mass and annual male reproductive success. Yearling body mass was associated with fped but not sMLH, while male annual reproductive success was best explained by both fped and residual sMLH. Thus, our study not only uncovers variation in the extent to which different traits show inbreeding depression, but also reveals trait‐specific differences in the ability of pedigrees and molecular markers to explain fitness variation and suggests that for certain traits, genetic markers may capture variation in realized IBDg above and beyond the pedigree expectation.  相似文献   

9.
Inbreeding is widely hypothesized to shape mating systems and population persistence, but such effects will depend on which traits show inbreeding depression. Population and evolutionary consequences could be substantial if inbreeding decreases sperm performance and hence decreases male fertilization success and female fertility. However, the magnitude of inbreeding depression in sperm performance traits has rarely been estimated in wild populations experiencing natural variation in inbreeding. Further, the hypothesis that inbreeding could increase within‐ejaculate variation in sperm traits and thereby further affect male fertilization success has not been explicitly tested. We used a wild pedigreed song sparrow (Melospiza melodia) population, where frequent extrapair copulations likely create strong postcopulatory competition for fertilization success, to quantify effects of male coefficient of inbreeding (f) on key sperm performance traits. We found no evidence of inbreeding depression in sperm motility, longevity, or velocity, and the within‐ejaculate variance in sperm velocity did not increase with male f. Contrary to inferences from highly inbred captive and experimental populations, our results imply that moderate inbreeding will not necessarily constrain sperm performance in wild populations. Consequently, the widely observed individual‐level and population‐level inbreeding depression in male and female fitness may not stem from reduced sperm performance in inbred males.  相似文献   

10.
We assessed the genetic diversity of 96 papaya accessions by molecular characterisation using microsatellite markers. Fifteen polymorphic primers were selected. Accessions, which were classified as Common, Formosa and Solo according to fruit types, were evaluated for allele frequency, heterozygosity, polymorphism information content (PIC), inbreeding coefficient (f) and the genetic diversity structure. Fifteen primers amplified 68 alleles with an average of 4.53 per locus. PIC values ranged from 0.19 to 0.69. The observed heterozygosity (HO) was low for all selected microsatellites. High f estimates (0.58) and excess of homozygotes indicated inbreeding, mainly caused by the tendency to select hermaphrodite plants for succeeding generations. Analysis of molecular variance showed that most of the variation (98%) resides within subpopulation. The genetic analysis based on Bayesian statistics proved to be sensitive enough to detect relationships among the papaya accessions, grouping them into six clusters, irrespective of their classification types.  相似文献   

11.
The South China tiger (Panther tigris amoyensis) is critically endangered with 73 remaining individuals living in captivity, all derived from six wild founders since 1963. The population shows a low level of juvenile survivorship and reproductive difficulties, and faces a huge conservation challenge. In this study, inbreeding depression and genetic diversity decline were examined by using pedigree data and 17 microsatellites. The constant B, which is related to the number of lethal equivalents, was estimated to be 0 for the offspring of noninbred parents, but was >0 for the offspring of inbred parents and for all offspring. Percentage of successfully breeding tigers inversely correlated with inbreeding level (r = −0.626, α = 0.05). Taken together, these findings suggest the population is suffering from inbreeding depression in juvenile survivorship and fecundity. No significant correlation was detectable for the mean litter size with f of either dams (r = −0.305, α = 0.46) or kittens (r = 0.105, α = 0.71), indicating litter size was not strongly subject to inbreeding depression. The average number of alleles per locus was 4.24 ± 1.03 (SE), but effective number of alleles was only 2.53 ± 0.91. Twenty-one alleles carried by early breeders at 13 loci were absent in the present breeders and potential breeders. Multilocus heterozygosity was inversely correlated with inbreeding levels (r = −0.601, α = 0.004). These findings suggest rapid allelic diversity loss is occurring in this small captive population and that heterozygosity is being lost as it becomes more inbred. Our phylogenetic analysis supports past work indicating introgression from northern Indochinese tigers in the population. As no wild representatives of the South China tiger can be added to the captive population, we may consider the alternate scenario of further introgression in the interest of countering inbreeding depression and declining genetic diversity.  相似文献   

12.
The primary goal of captive breeding programmes for endangered species is to prevent extinction, a component of which includes the preservation of genetic diversity and avoidance of inbreeding. This is typically accomplished by minimizing mean kinship in the population, thereby maintaining equal representation of the genetic founders used to initiate the captive population. If errors in the pedigree do exist, such an approach becomes less effective for minimizing inbreeding depression. In this study, both pedigree‐ and DNA‐based methods were used to assess whether inbreeding depression existed in the captive population of the critically endangered Attwater's Prairie‐chicken (Tympanuchus cupido attwateri), a subspecies of prairie grouse that has experienced a significant decline in abundance and concurrent reduction in neutral genetic diversity. When examining the captive population for signs of inbreeding, variation in pedigree‐based inbreeding coefficients (fpedigree) was less than that obtained from DNA‐based methods (fDNA). Mortality of chicks and adults in captivity were also positively correlated with parental relatedness (rDNA) and fDNA, respectively, while no correlation was observed with pedigree‐based measures when controlling for additional variables such as age, breeding facility, gender and captive/release status. Further, individual homozygosity by loci (HL) and parental rDNA values were positively correlated with adult mortality in captivity and the occurrence of a lethal congenital defect in chicks, respectively, suggesting that inbreeding may be a contributing factor increasing the frequency of this condition among Attwater's Prairie‐chickens. This study highlights the importance of using DNA‐based methods to better inform management decisions when pedigrees are incomplete or errors may exist due to uncertainty in pairings.  相似文献   

13.
The effects of adjusting additive (numerator) relationship matrices (A) for inbreeding estimates taken from molecular markers were investigated using a small, model population of Eucalyptus cladocalyx. A number of individual-tree, mixed-models were compared, incorporating estimates of population- and family-level selfing and ancestral inbreeding applied either as average values to the entire population or as variable estimates for subpopulation and family groups. The consequences of ignoring inbreeding were inflated additive genetic variance estimates and underestimation of residual variance, with resulting inflation of heritability. We found models that correct for differential inbreeding at the subpopulation level give similar results to more complex ones including family-level estimates. Our analysis indicates that the commonly applied coefficient of relationship for first-generation eucalypt progeny of ρ = 1/2.5 appears to be quite suitable for correcting variance component and heritability estimates. However, if inbreeding is not specifically corrected for by adjustment of A, some minor rank changes of individual breeding values can occur, especially where levels of inbreeding vary among families, and some suboptimal selections and loss of genetic gain may ensue.  相似文献   

14.
Using DNA fingerprint markers within species and populations of wild plants requires information on the relationship between fingerprint similarity and relatedness. We identified a hypervariable marker based on oliog(GATA)4-hybridization of DpnII-cut genomic DNA from Sea Lavender (Limonium carolinianum). Banding patterns were somatically stable and highly variable among unrelated individuals. Band molecular-weight sizing errors (as a percent of band molecular weight) were estimated at 0.44%±0.003 within gels and 0.76%±0.964 between gels. Band sizing errors defined a 99% confidence bin of ±0.95% (1.90% total) of molecular weight. Band-sharing estimates were based on this bin size and on variance estimates that compensate for non-independent comparisons. Band-sharing among nine unrelated individuals () was 0.198±0.O11. Experimental pollinations designed to produce selfed, fulland half-sib progeny groups led to five selfed progeny groups and no outcrossed progeny (mean band-sharing, ovS=0.468±0.074). A linear regression between band-sharing (S) and relatedness (r) assuming 17% inbreeding was r=0.006+0.914*S (R2=0.973) and established the maximum amount of inbreeding. ovS(0.392±0.022) estimated from wild pollinated seeds from four maternal families was intermediate to unrelated individuals and experimental selfed progeny, giving evidence for mixed mating in wild plants. More extensive plant pedigrees with known levels of inbreeding will be needed to measure variation in the relationship between S and r among populations and families.  相似文献   

15.
Molecular estimates of inbreeding may be made using genetic markers such as microsatellites, however the interpretation of resulting heterozygosity‐fitness correlations (HFCs) with respect to inbreeding depression is not straightforward. We investigated the relationship between pedigree‐determined inbreeding coefficients (f) and HFCs in a closely monitored, reintroduced population of Stewart Island robins (Petroica australis rakiura) on Ulva Island, New Zealand. Using a full sibling design, we focused on differences in juvenile survival associated specifically with individual sibling variation in standardized multilocus heterozygosity (SH) when expected f was identical. We found that within broods, siblings with higher SH at microsatellite loci experienced a higher probability of juvenile survival. This effect, however, was detected primarily within broods that experienced inbreeding or when inbreeding had occurred in their pedigree histories (i.e., at the parents’ level). Thus we show, for the first time in a wild population, that the strength of an HFC is partially dependent on the presence of inbreeding events in the recent pedigree history. Our results illustrate the importance of realized effects of inbreeding on genetic variation and fitness and the value of full‐sibling designs for the study of HFCs in the context of small, inbred populations.  相似文献   

16.
Inbreeding depression is usually quantified by regressing individual phenotypic values on inbreeding coefficients, implicitly assuming there is no correlation between an individual's phenotype and the kinship coefficient to its mate. If such an association between parental phenotype and parental kinship exists, and if the trait of interest is heritable, estimates of inbreeding depression can be biased. Here we first derive the expected bias as a function of the covariance between mean parental breeding value and parental kinship. Subsequently, we use simulated data to confirm the existence of this bias, and show that it can be accounted for in a quantitative genetic animal model. Finally, we use long‐term individual‐based data for white‐throated dippers (Cinclus cinclus), a bird species in which inbreeding is relatively common, to obtain an empirical estimate of this bias. We show that during part of the study period, parents of inbred birds had shorter wings than those of outbred birds, and as wing length is heritable, inbred individuals were smaller, independent of any inbreeding effects. This resulted in the overestimation of inbreeding effects. Similarly, during a period when parents of inbred birds had longer wings, we found that inbreeding effects were underestimated. We discuss how such associations may have arisen in this system, and why they are likely to occur in others, too. Overall, we demonstrate how less biased estimates of inbreeding depression can be obtained within a quantitative genetic framework, and suggest that inbreeding and additive genetic effects should be accounted for simultaneously whenever possible.  相似文献   

17.
Genome duplication resulting in polyploidy can have significant consequences for the evolution of mating systems. Most theory predicts that self‐fertilization will be selectively favored in polyploids; however, many autopolyploids are outcrossing or mixed‐mating. Here, we examine the hypothesis that the evolution of selfing is restricted in autopolyploids because the genetic cost of selfing (i.e., inbreeding depression) increases monotonically with successive generations of inbreeding. Using the herbaceous, autotetraploid plant Chamerion angustifolium, we generated populations with different inbreeding coefficients (F= 0, 0.17 and 0.36) through three consecutive generations of selfing and compared their magnitudes of inbreeding depression in a common environment. Mating system estimates for four natural populations confirmed that tetraploid selfing rates (sm= 0.25, SE = 0.02) are similar to those of diploids (sm= 0.12, SE = 0.12; F1,2= 1.34, P= 0.37) indicating that both cytotypes are predominantly outcrossing. Compared to an outbred control line, mean inbreeding depression for seed production, survival, and height (vegetative and total) in the inbred line differed among generations (inbreeding coefficients). Across all stages, inbreeding depression (relative to control) was positively related to generation (inbreeding coefficient). Although the initial costs of inbreeding in extant and newly synthesized polyploids may be low compared to diploids, the monotonic increase in inbreeding depression with repeated inbreeding may limit the extent to which selfing variants are favored.  相似文献   

18.
Characterizing inbreeding depression in wildlife populations can be critical to their conservation. Coefficients of individual inbreeding can be estimated from genome‐wide marker data. The degree to which sensitivity of inbreeding coefficients to population genetic substructure alters estimates of inbreeding depression in wild populations is not well understood. Using generalized linear models, we tested the power of two frequently used inbreeding coefficients that are calculated from genome‐wide SNP markers, FH and F^III, to predict four fitness traits estimated over two decades in an isolated population of the critically endangered Leadbeater's possum. FH estimates inbreeding as excess observed homozygotes relative to equilibrium expectations, whereas F^III quantifies allelic similarity between the gametes that formed an individual, and upweights rare homozygotes. We estimated FH and F^III from 1,575 genome‐wide SNP loci in individuals with fitness trait data (N = 179–237 per trait), and computed revised coefficients, FHby group and F^IIIby group, adjusted for population genetic substructure by calculating them separately within two different genetic groups of individuals identified in the population. Using FH or F^III in the models, inbreeding depression was detected for survival to sexual maturity, longevity and whether individuals bred during their lifetime. F^IIIby group (but not FHby group) additionally revealed significant inbreeding depression for lifetime reproductive output (total offspring assigned to each individual). Estimates of numbers of lethal equivalents indicated substantial inbreeding load, but differing between inbreeding estimators. Inbreeding depression, declining population size, and low and declining genetic diversity suggest that genetic rescue may assist in preventing extinction of this unique Leadbeater's possum population.  相似文献   

19.
Genomic approaches permit direct estimation of inbreeding and its effect on fitness. We used genomic‐based estimates of inbreeding to investigate their relationship with eight adult traits in a captive‐reared Pacific salmonid that is released into the wild. Estimates were also used to determine whether alternative broodstock management approaches reduced risks of inbreeding. Specifically, 1,100 unlinked restriction‐site associated (RAD) loci were used to compare pairwise relatedness, derived from a relationship matrix, and individual inbreeding, estimated by comparing observed and expected homozygosity, across four generations in two hatchery lines of Chinook salmon that were derived from the same source. The lines are managed as “integrated” with the founding wild stock, with ongoing gene flow, and as “segregated” with no gene flow. While relatedness and inbreeding increased in the first generation of both lines, possibly due to population subdivision caused by hatchery initiation, the integrated line had significantly lower levels in some subsequent generations (relatedness: F2–F4; inbreeding F2). Generally, inbreeding was similar between the lines despite large differences in effective numbers of breeders. Inbreeding did not affect fecundity, reproductive effort, return timing, fork length, weight, condition factor, and daily growth coefficient. However, it delayed spawn timing by 1.75 days per one standard deviation increase in F (~0.16). The results indicate that integrated management may reduce inbreeding but also suggest that it is relatively low in a small, segregated hatchery population that maximized number of breeders. Our findings demonstrate the utility of genomics to monitor inbreeding under alternative management strategies in captive breeding programs.  相似文献   

20.
The ability to self in the absence of pollinators, i.e. reproductive assurance, and the detrimental consequences of inbreeding, i.e. inbreeding depression, are central factors influencing plant mating system evolution. The purpose of this study was to quantify whether self-fertility and inbreeding depression are related to levels of inbreeding in four Cyclamen species, namely C. balearicum (mean Fis = 0.930), C. creticum (mean Fis = 0.748), C. repandum (mean Fis = 0.658) and C. hederifolium (mean Fis = 0.329). C. balearicum showed a markedly greater capacity to autonomously self-fertilize than the three other species, which may have favoured inbreeding in this species. Levels of inbreeding depression were highest in C. creticum and C. hederifolium at the fruit maturation (δ = 0.18 and 0.20, respectively) and seed number (δ = 0.32 and 0.30, respectively) stages, and for C. repandum at the seed weight stage (δ = 0.23). Although C. balearicum showed inbreeding depression on seed germination (δ = 0.45), this may be an artefact of the generally low levels of seed germination in the experiment. Overall, we observed only limited evidence for the predicted negative relation between inbreeding coefficients and levels of inbreeding since C. creticum had high levels of inbreeding and inbreeding depression. Other factors may thus influence the relationship between inbreeding and inbreeding depression in these species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号