首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Guan CX  Zhang M  Qin XQ  Cui YR  Luo ZQ  Bai HB  Fang X 《Peptides》2006,27(12):3107-3114
In the present study, we investigated the effects of vasoactive intestinal peptide (VIP) on wound healing of bronchial epithelium. Wound healing of the mechanical damaged human bronchial epithelial cells (HBEC) was observed in the absence or presence of VIP. Effects of VIP on chemotactic migration, cell proliferation of HBEC were also tested. HBEC chemotaxis was assessed by the blind well chamber technique, the cell cycle was determined by flow cytometry, and cell proliferation was determined by measuring the expression of proliferating cell nuclear antigen Ki67. Effects of VIP on epithelial E-cadherins protein and mRNA were also measured by immunohistochemistry and RT-PCR. The results showed that VIP accelerated the recovery of wound area of HBEC. VIP increased the migration and proliferation of HBEC, and these effects were blocked by a VPAC1 receptor antagonist. VIP also increased the expression of E-cadherin mRNA and protein in HBEC, suggesting that protective effects of VIP on wound healing may be related to its ability to increase the expression of E-cadherin. In conclusion, VIP has protective effects against human bronchial epithelial cell damage, and the beneficial effects of VIP might be mediated, at least in part, by VPAC1, and associated with increased expression of E-cadherin.  相似文献   

2.
3.
Guan CX  Cui YR  Zhang M  Bai HB  Khunkhun R  Fang X 《Peptides》2007,28(9):1667-1673
Vasoactive intestinal peptide (VIP), a non-adrenergic, non-cholinergic neuromediator, plays an important role in maintaining the bronchial tone of the airway and has anti-inflammatory properties. Recently, we reported that VIP enhances wound repair in human bronchial epithelial cells (HBEC). In the present study, we have identified the intracellular signaling molecules that are involved in VIP-mediated wound healing in HBEC. The effects of VIP on wound repair of HBEC were partially blocked by H-7 (a protein kinase C (PKC) inhibitor), W-7 (a calmodulin inhibitor), H-89 (a protein kinase A (PKA) inhibitor), and PD98059 (a specific extracellular signal-regulated kinase (ERK) inhibitor). VIP-induced chemotactic migration was inhibited in the presence of W-7, H-89, PD98059 or H-7. H-7, W-7, and H-89 were also found to decrease VIP-induced expression of Ki67 as well as the proliferation index in HBEC. Furthermore, H-7, W-7, H-89, and PD98059 inhibited the expression of E-cd protein and mRNA induced by VIP. These results suggest that intracellular signaling molecules such as PKA, PKC, ERK, and calmodulin play important role in VIP-mediated wound healing of HBEC.  相似文献   

4.

Background

Human rhinoviruses (RV), the most common triggers of acute asthma exacerbations, are considered not cytotoxic to the bronchial epithelium. Recent observations, however, have questioned this knowledge. The aim of this study was to evaluate the ability of RV to induce epithelial cytotoxicity and affect epithelial repair in-vitro.

Methods

Monolayers of BEAS-2B bronchial epithelial cells, seeded at different densities were exposed to RV serotypes 1b, 5, 7, 9, 14, 16. Cytotoxicity was assessed chromatometrically. Epithelial monolayers were mechanically wounded, exposed or not to RV and the repopulation of the damaged area was assessed by image analysis. Finally epithelial cell proliferation was assessed by quantitation of proliferating cell nuclear antigen (PCNA) by flow cytometry.

Results

RV1b, RV5, RV7, RV14 and RV16 were able to induce considerable epithelial cytotoxicity, more pronounced in less dense cultures, in a cell-density and dose-dependent manner. RV9 was not cytotoxic. Furthermore, RV infection diminished the self-repair capacity of bronchial epithelial cells and reduced cell proliferation.

Conclusion

RV-induced epithelial cytotoxicity may become considerable in already compromised epithelium, such as in the case of asthma. The RV-induced impairment on epithelial proliferation and self-repair capacity may contribute to the development of airway remodeling.  相似文献   

5.
6.
Spreading and migration of the basal cells neighboring a wound is essential for airway epithelial repair. To gain insight into the molecular mechanisms that govern these cellular processes, we asked whether normal human airway epithelial cells can form podosomes, a cellular structure discovered from cancer and mesenchymal cells that controls migration and invasion. Herein, we report that phorbol-12, 13-dibutyrate (PDBu), a protein kinase C activator, induced reorganization of cytoskeletal structure in primary normal human bronchial epithelial cells, and in normal human airway epithelial BEAS2B cells. Z-stack scanning confocal microscopy showed that PDBu-induced podosome-like structures contain actin-rich columns that arise from the ventral surface of the cell, and also revealed the presence of circular ruffles/waves at the dorsal cell surface. The molecular components of these cytoskeletal structures were determined with immunofluorescent staining. Using in situ zymography, we demonstrated that PDBu-induced podosomes were capable of degrading fibronectin-gelatin-sucrose matrix. PDBu also increased epithelial cell invasion across Transwell chamber. Podosomes and circular dorsal ruffles may be important for epithelial cell migration and invasion, thus contributing to respiratory epithelial repair and regeneration.  相似文献   

7.
The disintegrin metalloproteases (or ADAMs) are membrane-anchored glycoproteins that have been implicated in cell-cell or cell-matrix interactions and in proteolysis of molecules on the cell surface. The expression and/or the pathophysiological implications of ADAMs are not known in intestinal epithelial cells. Therefore, our aim was to investigate the expression and the role of ADAMs in intestinal epithelial cells. Expression of ADAMs was assessed by RT-PCR, Western blot analysis, and immunufluorescence experiments. Wound-healing experiments were performed by using the electric cell substrate impedence sensing technology. Our results showed that ADAMs-10, -12, and -15 mRNA are expressed in the colonic human cell lines Caco2-BBE and HT29-Cl.19A. An ADAM-15 complementary DNA cloned from Caco2-BBE poly(A)+ RNA, and encompassing the entire coding region, was found to be shorter and to present a different region encoding the cytoplasmic tail compared with ADAM-15 sequence deposited in the database. In Caco2-BBE cells and colonic epithelial cells, ADAM-15 protein was found in the apical, basolateral, and intracellular compartments. We also showed that the overexpression of ADAM-15 reduced cell migration in a wound-healing assay in Caco2-BBE monolayers. Our data show that 1) ADAM-15 is expressed in human intestinal epithelia, 2) a new variant of ADAM-15 is expressed in a human intestinal epithelial cell line, and 3) ADAM-15 is involved in intestinal epithelial cells wound-healing processes. Together, these results suggest that ADAM-15 may have important pathophysiological roles in intestinal cells.  相似文献   

8.
Asthma is a disease characterized by reversible airway obstruction. An additional hallmark of chronic asthma is altered wound healing that leads to airway remodeling. Although beta-agonists are effective in treating the bronchospasm associated with asthma, their effects on airway wound healing, which are related to airway remodeling, are unknown. It has been demonstrated that beta-agonists can alter the signaling of epidermal growth factor (EGF) receptors, which are important in timely wound healing. Therefore, we hypothesized that the beta-agonist isoproterenol would affect wound healing. Using an in vitro scrape wound assay, we demonstrated that isoproterenol attenuates EGF-stimulated wound healing in 16HBE airway epithelial cell cultures. Through experiments with forskolin and cells overexpressing beta2-adrenergic receptor-yellow fluorescent protein, we show that attenuation is due to the accumulation of cAMP and the involvement of at least one additional pathway. Furthermore, attenuation is not due to a direct effect on the EGF receptor or to an alteration of the ERK/MAPK signaling cascade. Based on these results, we propose that isoproterenol may exert its effects through other MAPK signaling pathways (JNK and/or p38) or through parallel mechanisms. These results also demonstrate a problem of potential therapeutic relevance in which a commonly prescribed medication may alter wound healing and contribute to the remodeling of asthmatic airways.  相似文献   

9.
We have previously shown that Rho small GTPase is required for modulating both cell migration and proliferation through cytoskeleton reorganization and focal adhesion formation in response to wounding. In the present study, we investigated the role of Rho kinases (ROCKs), major effectors of Rho GTPase, in mediating corneal epithelial wound healing. Both ROCK 1 and 2 were expressed and activated in THCE cells, an SV40-immortalized human corneal epithelial cell (HCEC) line, in response to wounding, lysophosphatidic acid, and heparin-binding EGF-like growth factor (HB-EGF) stimulations. The ROCK inhibitor Y-27632 efficiently antagonized ROCK activities without affecting Rho activation in wounded HCECs. Y-27632 promoted basal and HB-EGF-enhanced scratch wound healing and enhanced cell migration and adhesion to matrices, while retarded HB-EGF induced cell proliferation. E-cadherin- and beta-catenin-mediated cell-cell junction and actin cytoskeleton organization were disrupted by Y-27632. Y-27632 impaired the formation and maintenance of tight junction barriers indicated by decreased trans-epithelial resistance and disrupted occludin staining. We conclude that ROCK activities enhance cell proliferation, promote epithelial differentiation, but negatively modulate cell migration and cell adhesion and therefore play a role in regulating corneal epithelial wound healing.  相似文献   

10.
3-nitrotyrosine (NO2Tyr), an L-tyrosine derivative during nitrative stress, can substitute the COOH-terminal tyrosine of alpha-tubulin, posttranslationally altering microtubular functions. Because infection of the cells by respiratory syncytial virus (RSV) may require intact microtubules, we tested the hypothesis that NO2Tyr would inhibit RSV infection and intracellular signaling via nitrotyrosination of alpha-tubulin. A human bronchial epithelial cell line (BEAS-2B) was incubated with RSV with or without NO2Tyr. The release of chemokines and viral particles and activation of interferon regulatory factor-3 (IRF-3) were measured. Incubation with NO2Tyr increased nitrotyrosinated alpha-tubulin, and NO2Tyr colocalized with microtubules. RSV-infected cells released viral particles, RANTES, and IL-8 in a time- and dose-dependent manner, and intracellular RSV proteins coprecipitated with alpha-tubulin. NO2Tyr attenuated the RSV-induced release of RANTES, IL-8, and viral particles by 50-90% and decreased alpha-tubulin-associated RSV proteins. 3-chlorotyrosine, another L-tyrosine derivative, had no effects. NO2Tyr also inhibited the RSV-induced shift of the unphosphorylated form I of IRF-3 to the phosphorylated form II. Pre-exposure of the cells to NO(2) (0.15 ppm, 4 h), which produced diffuse protein tyrosine nitration, did not affect RSV-induced release of RANTES, IL-8, or viral particles. NO2Tyr did not affect the potential of viral spreading to the neighboring cells since the RSV titers were not decreased when the uninfected cells were cocultured with the preinfected cells in NO2Tyr-containing medium. These results indicate that NO2Tyr, by replacing the COOH-terminal tyrosine of alpha-tubulin, attenuated RSV infection, and the inhibition appeared to occur at the early stages of RSV infection.  相似文献   

11.
Silicosis is an incurable and progressive lung disease characterized by chronic inflammation and fibroblasts accumulation. Studies have indicated a vital role for epithelial-mesenchymal transition (EMT) in fibroblasts accumulation. NLRP3 inflammasome is a critical mediator of inflammation in response to a wide range of stimuli (including silica particles), and plays an important role in many respiratory diseases. However, whether NLRP3 inflammasome regulates silica-induced EMT remains unknown. Our results showed that silica induced EMT in human bronchial epithelial cells (16HBE cells) in a dose- and time-dependent manner. Meanwhile, silica persistently activated NLRP3 inflammasome as indicated by continuously elevated extracellular levels of interleukin-1β (IL-1β) and IL-18. NLRP3 inflammasome inhibition by short hairpin RNA (shRNA)-mediated knockdown of NLRP3, selective inhibitor MCC950, and caspase-1 inhibitor Z-YVAD-FMK attenuated silica-induced EMT. Western blot analysis indicated that TAK1-MAPK-Snail/NF-κB pathway involved NLRP3 inflammasome-mediated EMT. Moreover, pirfenidone, a commercially and clinically available drug approved for treating idiopathic pulmonary fibrosis (IPF), effectively suppressed silica-induced EMT of 16HBE cells in line with NLRP3 inflammasome inhibition. Collectively, our results indicate that NLRP3 inflammasome is a promising target for blocking or retarding EMT-mediated fibrosis in pulmonary silicosis. On basis of this mechanism, pirfenidone might be a potential drug for the treatment of silicosis.  相似文献   

12.
Normal human bronchial epithelial cells (BE) and adenovirus-12 SV40 hybrid virus transformed, non-tumorigenic human bronchial epithelial cells (BEAS-2B) were cultured for 7 days in a serum free hormone supplemented medium. BE cells after 3 days in culture were exposed to conditioned medium (CMt) from confluent BEAS-2B cells. By day 7, CMt-treated BE cells exhibited a lower colony forming efficiency (CFE), fewer cells per colony, and a reduced mitotic index (MI) and BrdU (bromodeoxyuridine) labeling index. CMt also enhanced the expression of a terminally differentiated squamous phenotype in BE cells. Cell free lysates from BEAS-2B cells (CFLt) had effects similar to CMt on the MI and morphology of BE cells. In contrast, CMt and CFLt did not inhibit the growth, or alter the morphology of BEAS-2B cells. Conditioned medium from BE cells (CMn) did not reduce the growth of BEAS-2B cells, and had little effect on the morphology of BE cells. In co-culturesAbbreviations BE normal bronchial epithelial cells - BEAS-2B adenovirus-12 SV40 hybrid virus transformed bronchial epithelial cells - CMn conditioned medium from BE cells - CMt conditioned medium from BEAS-2B cells - CFn cell free lysate from BE cells - CFLt cell free lysate from BEAS-2B cells - BrdU bromodeoxyuridine - KGM keratinocyte growth medium - TGF- transforming growth factor type - NCI-LHC National Cancer Institute-Laboratory of Human Carcinogenesis Contribution No. 2801 from the Pathobiology Laboratory, University of Maryland.  相似文献   

13.
Wound healing is a highly orchestrated physiological process consisting of a complex events, and scarless wound healing is highly desired for the development and application in clinical medicine. Recently, we have demonstrated that human amniotic epithelial cells (hAECs) promoted wound healing and inhibited scar formation through a paracrine mechanism. However, exosomes (Exo) are one of the most important paracrine factors. Whether exosomes derived from human amniotic epithelial cells (hAECs-Exo) have positive effects on scarless wound healing have not been reported yet. In this study, we examined the role of hAECs-Exo on wound healing in a rat model. We found that hAECs, which exhibit characteristics of both embryonic and mesenchymal stem cells, have the potential to differentiate into all three germ layers. hAECs-Exo ranged from 50 to 150 nm in diameter, and positive for exosomal markers CD9, CD63, CD81, Alix, TSG101 and HLA-G. Internalization of hAECs-Exo promoted the migration and proliferation of fibroblasts. Moreover, the deposition of extracellular matrix (ECM) were partly abolished by the treatment of high concentration of hAECs-Exo (100 μg/mL), which may be through stimulating the expression of matrix metalloproteinase-1 (MMP-1). In vivo animal experiments showed that hAECs-Exo improved the skin wound healing with well-organized collagen fibers. Taken together, These findings represent that hAECs-Exo can be used as a novel hope in cell-free therapy for scarless wound healing.  相似文献   

14.
Current experimental models of esophageal epithelium in vitro suffer from either poor differentiation or complicated culture systems. We have established a model to study stratified squamous epithelium in vitro, which is very similar to esophageal epithelium in vivo. A stratified squamous multilayer epithelium was formed by seeding primary normal human bronchial epithelial (NHBE) cells onto collagen- and fibronectin-coated trans-well inserts and then cultivating the cells under air-liquid interface (ALI) conditions in the presence of growth factors and low levels of all-trans-retinoic acid. Trans-epithelial electrical resistance (TEER) measurements revealed the presence of a tight barrier, previously only achievable with esophageal biopsies mounted in Ussing chambers. Molecular markers for desmosomes, cornified envelope, tight junctions, and mature esophageal epithelium were upregulated in the differentiating culture in parallel with functional properties, such as decreased permeability and acid resistance and restoration. Acid exposure resulted in a decrease in TEER, but following 1-h recovery the TEER values were fully restored. Treatment with all-trans-retinoic acid decreased TEER and inhibited the recovery after acid challenge. PPAR-delta agonist treatment increased TEER, and this temporary increase in TEER was consistent with an increase in involucrin mRNA. Global gene expression analysis showed that ALI-differentiated NHBE cells had expression profiles more similar to epithelial biopsies from the esophageal tissue of healthy volunteers than to any other cell line. With respect to morphology, molecular markers, barrier properties, and acid resistance, this model presents a new way to investigate barrier properties and the possible effects of different agents on human esophagus-like epithelium.  相似文献   

15.
In chronic obstructive pulmonary diseases, the airway epithelium is chronically exposed to neutrophil elastase, an inflammatory protease. The cellular response to neutrophil elastase dictates the balance between epithelial injury and repair. Key regulators of epithelial migration and proliferation are the ErbB receptor tyrosine kinases, including the epidermal growth factor receptor. In this context, we investigated whether neutrophil elastase may regulate expression of MUC4, a membrane-tethered mucin that has recently been identified as a ligand for ErbB2, the major heterodimerization partner of the epidermal growth factor receptor. In normal human bronchial epithelial cells, neutrophil elastase increased MUC4 mRNA levels in both a concentration- and time-dependent manner. RNA stability assays revealed that neutrophil elastase increased MUC4 mRNA levels by prolonging the mRNA half-life from 5 to 21 h. Neutrophil elastase also increased MUC4 glycoprotein levels as determined by Western analysis, using a monoclonal antibody specific for a nontandem repeat MUC4 sequence. Therefore, airway epithelial cells respond to neutrophil elastase exposure by increasing expression of MUC4, a potential activator of epithelial repair mechanisms.  相似文献   

16.

Background  

Cutaneous wound repair in adult mammals does not regenerate the original epithelial architecture and results in altered skin function. We propose that lack of regeneration may be due to the absence of appropriate molecular signals to promote regeneration. In this study, we investigated the regulation of Wnt signaling during cutaneous wound healing and the consequence of activating either the beta-catenin-dependent or beta-catenin-independent Wnt signaling on epidermal architecture during wound repair.  相似文献   

17.
18.
19.
20.
Linear narrow wounds produced on cultured bovine corneal endothelial monolayers heal by actin cable formation at the wound border and lamellar crawling of cells into the injured area. We report the novel finding that membrane potential depolarization occurs at the leading edge of wounds and gradually extends inward toward the neighboring cells. We have determined that the replacement of extracellular Na+ by choline and the incorporation of phenamil, an inhibitor of the epithelial Na+ channel (ENaC), provoke a decrease in the actin cable and depolarization areas and in the lamellar activity of the wound edges. To the contrary, extracellular Li+ can successfully replace Na+ in the determination of the depolarization and cytoskeletal responses. This finding supports the idea that membrane depolarization, not the increase in intracellular Na+ concentration, is responsible for the formation of the actin cable, a result that is in agreement with previous evidence showing that nonspecific depolarization of the plasma membrane potential (PMP) of epithelial cells may promote characteristic cytoskeletal rearrangements per se (Chifflet S, Hernández JA, Grasso S, and Cirillo A. Exp Cell Res 282: 1–13, 2003). We suggest that spontaneous depolarization of the PMP of the cells at the wound borders determined by a rise in the ENaC activity of these cells constitutes an additional factor in the intermediate cellular processes leading to wound healing in some epithelia. actin; epithelial sodium channel  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号