首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gustatory hairs were investigated on the legs and mouthparts of Culiseta inornata (Williston) (Diptera: Culicidae). One type of hair, each innervated by four neurons, was found on the legs. Two of the neurons responded to NaCl stimulation, one neuron to water stimulation, and one neuron to sucrose stimulation. Three kinds of hairs designated Type I (T1), Type 2 (T2) and Type 3 (T3) were analyzed on the labella. The T1 hairs are innervated by one sugar neuron, one mechanoreceptor, two salt neurons and one water neuron. The T2 hairs are innervated by two salt neurons and one mechanoreceptor. The T3 hairs, located on the oral surface of the labella, are innervated by a variable number (2-5) of neurons. Precise identification of the T3 chemosensory neurons was not made because of the small size and inaccessibility of the T3 hairs. Chemosensory hairs on the tip of the labrum were tested electrophysiologically. the sequence of decreasing effeectiveness for the three salts tested was KCl greater than NaCl greater than LiCl. Labral chemoreceptors also responded positively to sucrose.  相似文献   

2.
An analysis of the various parts of the electrical responses to the chemical and electrical stimulation of a single labellar chemosensory hair of the blowfly, Phormia regina, indicates that the recording conditions for the spike potentials approximate the intracellular recordings made in other types of sense cells. The large positive resting potential probably arises from the basement membrane of the hypodermal cells and neurilemma rather than from the neurons at the base of the chemosensory hair. The responses to polarizing currents passed through single chemosensory hairs support this analysis. The behavioral responses to similar polarizing currents are shown to result from the action of the current on the neurons at the bases of the adjacent chemosensory hairs. The reported neural interaction of the two chemosensory neurons associated with the chemosensory hair is probably due to the physical-chemical attributes of the stimulating solution rather than to any real neural interaction. Observations on the latency of the initial nerve impulse in response to chemical stimulation indicate that the chemosensory neurons are normally free from spontaneous spike activity.  相似文献   

3.
Locusts lay their eggs by digging into a substrate using rhythmic opening and closing movements of ovipositor valves at the end of the abdomen. The digging rhythm is inhibited by chemosensory stimulation of chemoreceptors on the valves. Nitric oxide (NO) modulated the effects of chemosensory stimulation on the rhythm. Stimulation with either sucrose or sodium chloride (NaCl) stopped the digging rhythm, whereas simultaneous bath application of the NO inhibitor, N-nitro-L-arginine methyl ester (L-NAME), increased the duration for which the digging rhythm stopped. Increasing NO levels caused a significant reduction in the cessation of the rhythm in response to the same 2 chemicals. Bath applying cyclic guanosine monophosphate (cGMP), the soluble guanylate inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), and the generic protein kinase inhibitor H-7 had no effect on the duration for which the rhythm stopped in response to NaCl stimulation. Conversely, bath application of cGMP and ODQ resulted in a significant decrease and increase, respectively, in the duration for which the digging rhythm stopped when stimulated with sucrose. Moreover, bath application of the selective protein kinase G (PKG) inhibitor KT-5823 also resulted in a significant increase in the duration of cessation of the rhythm when stimulated with sucrose. Results suggest that NO modulates the behavioral responses to NaCl via a cGMP/PKG-independent pathway while modulating the responses to sucrose via a NO-cGMP/PKG-dependent pathway.  相似文献   

4.
Chemical stimulation of contact chemoreceptors located on the legs of locusts evokes withdrawal movements of the leg. The likelihood of withdrawal depends on the site of stimulation, in addition to the identity and concentration of the chemical stimulus. A significantly higher percentage of locusts exhibit leg avoidance movements in response to stimulation of distal parts of the leg with any given chemical stimulus compared to proximal sites. Moreover, the percentage of locusts exhibiting avoidance movements is correlated with the density and sensitivity of chemoreceptors on different sites of an individual leg. The effectiveness of chemical stimulation also differs between the fore and hind legs, with NaCl evoking a higher probability of leg withdrawal movements on the foreleg. Moreover, sucrose was less effective than NaCl at evoking withdrawal movements of the foreleg, particularly at low concentrations. The gradients in behavioural responses can be partially attributed to differences in the responsiveness and density of the contact chemoreceptors. These results may reflect the different specialization of individual legs, with the forelegs particularly involved in food selection.  相似文献   

5.
Glucose-sensing neurons in the ventromedial hypothalamus (VMH) are involved in the regulation of glucose homeostasis. Glucose-sensing neurons alter their action potential frequency in response to physiological changes in extracellular glucose, insulin, and leptin. Glucose-excited neurons decrease, whereas glucose-inhibited (GI) neurons increase, their action potential frequency when extracellular glucose is reduced. Central nitric oxide (NO) synthesis is regulated by changes in local fuel availability, as well as insulin and leptin. NO is involved in the regulation of food intake and is altered in obesity and diabetes. Thus this study tests the hypothesis that NO synthesis is a site of convergence for glucose, leptin, and insulin signaling in VMH glucose-sensing neurons. With the use of the NO-sensitive dye 4-amino-5-methylamino-2',7'-difluorofluorescein in conjunction with the membrane potential-sensitive dye fluorometric imaging plate reader, we found that glucose and leptin suppress, whereas insulin stimulates neuronal nitric oxide synthase (nNOS)-dependent NO production in cultured VMH GI neurons. The effects of glucose and leptin were mediated by suppression of AMP-activated protein kinase (AMPK). The AMPK activator 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR) increased both NO production and neuronal activity in GI neurons. In contrast, the effects of insulin on NO production were blocked by the phosphoinositide 3-kinase inhibitors wortmannin and LY-294002. Furthermore, decreased glucose, insulin, and AICAR increase the phosphorylation of VMH nNOS, whereas leptin decreases it. Finally, VMH neurons express soluble guanylyl cyclase, a downstream mediator of NO signaling. Thus NO may mediate, in part, glucose, leptin, and insulin signaling in VMH glucose-sensing neurons.  相似文献   

6.
The phagostimulants from the cellular fraction of blood induce gorging of Aedes aegypti (L.), and this process is enhanced by some plasma components. This project examines the responses of the labral apical chemoreceptors to plasma components enhancing phagostimulation. From the electrophysiological responses of the labral apical chemoreceptors four cells were identified by the waveform of their action potentials. Three of the cells (Cell 2, Cell 3 and Cell 4) responded in a dose dependent manner to NaCl. The responses of Cell 2 and Cell 3 to NaCl concentrations from 1 to 500 mmol/l can be described by a logarithmic equation. The response of Cell 2 to 150 mmol/l NaCl is modulated when a buffer is added. The magnitude of the modulation of the response is determined by the nature of the buffer: NaHCO(3) inhibits while Na(2)HPO(4) enhances the response. High osmotic pressure inhibits the response of Cell 4, regardless of how it is achieved. Cell 4 responds with a high frequency to the presence of L-alanine, the C-terminal amino acid of albumin, but shows a reduced response to the same concentration of albumin. From these results it can be concluded that labral apical chemoreceptors of A. aegypti are capable of detecting the plasma components involved in blood recognition.  相似文献   

7.
Striatal nitric oxide (NO) signaling plays a critical role in modulating neural processing and motor behavior. Nitrergic interneurons receive synaptic inputs from corticostriatal neurons and are activated via ionotropic glutamate receptor stimulation. However, the afferent regulation of NO signaling is poorly characterized. The role of frontal cortical afferents in regulating NO transmission was assessed in anesthetized rats using amperometric microsensor measurements of NO efflux and local field potential recordings. Low frequency (3 Hz) electrical stimulation of the ipsilateral cortex did not consistently evoke detectable changes in striatal NO efflux. In contrast, train stimulation (30 Hz) of frontal cortical afferents facilitated NO efflux in a stimulus intensity-dependent manner. Nitric oxide efflux evoked by train stimulation was transient, reproducible over time, and attenuated by systemic administration of either the NMDA receptor antagonist MK-801 or the neuronal NO synthase inhibitors 7-nitroindazole and NG-propyl-L-arginine. The interaction between NO efflux evoked via train stimulation and local striatal neuron activity was assessed using dual microsensor and local field potential recordings carried out concurrently in the contralateral and ipsilateral striatum, respectively. Systemic administration of the non-specific NO synthase inhibitor methylene blue attenuated both evoked NO efflux and the peak oscillation frequency (within the delta band) of local field potentials recorded immediately after train stimulation. Taken together, these observations indicate that feed-forward activation of neuronal NO signaling by phasic activation of frontal cortical afferents facilitates the synchronization of glutamate driven oscillations in striatal neurons. Thus, NO signaling may act to amplify coherent corticostriatal transmission and synchronize striatal output.  相似文献   

8.
Characteristics of antidromic action potentials of neurons of the paraventricular and supraoptic nuclei of the rat hypothalamus were studied during stimulation of the hypothalamo-hypophyseal tract by stimuli of varied amplitude and frequency. Step-like changes were found in spike latency in response to an increase in strength (up to 1.5–2.5 thresholds) or frequency (over 100 Hz) of stimulation, as well as cases with variation of the degree of division of the peak into A and B components. Injection of leu-enkephalin analog into the third ventricle or intravenous injection of NaCl solution (1 M) caused reversible changes in the level of excitability of antidromically activated neurons: leu-enkephalin mainly increased the latent period and threshold of action potential generation and reduced the reproducible frequency of stimulation to 10 Hz, whereas NaCl had the opposite effect. The results indicate that when the adopted criteria of antidromic identification of neurosecretory cells are used the level of their excitability must be taken into account.A. A. Ukhtomskii Physiological Research Institute, A. A. Zhdanov Leningrad State University. Translated from Neirofiziologiya, Vol. 14, No. 6, pp. 585–591, November–December, 1982.  相似文献   

9.
Contact chemoreceptors (basiconic sensilla) located on the ovipositor and genital segments of the locust serve to control the chemical features of the substrate before and during oviposition. They occur dispersed and also crowded in fields between mechanosensory exteroceptors sensitive to touch or wind (trichoid and filiform sensilla). The central nervous projections of the four chemosensory and one mechanosensory neurons from single basiconic sensilla were stained selectively, focusing on receptors on the ovipositor valves, which usually contact the substrate during the pre-oviposition probing movements. All axons and neurites from one contact chemoreceptor usually stay close together in most of their projections. Segregation occurs mainly when single axons terminate in one neuromere while the others proceed to a different neuromere or ganglion. For projections from one chemoreceptor, there is evidence neither for functional segregation of mechanosensory from chemosensory afferent terminals nor for specific segregation between different chemosensory afferents. The projections from sensilla of dorsal cuticle tend to project rather uniformly along the midline of the terminal ganglion. Comparative staining of touch- and wind-sensitive hair receptor neurons shows mostly central projections, similar to those of neighbouring contact chemoreceptors. From the typical intersegmental projections of most primary afferents and from the lack of segregation into glomerular structures, we conclude that integration of chemosensory information from the genital segments is distributed in the terminal and the 7th abdominal ganglion.  相似文献   

10.
During the appetitive phase of feeding, hungry leeches detect a prey by the integration of signals perceived by different sensory systems. Earlier reports suggested that chemical or thermal sensory stimulation of the lip was associated with increased afferent activity in cephalic nerves connecting the lip to the central nervous system. These authors further suggested that this activity was relayed to Retzius cells in segmental ganglia, which then released serotonin to initiate and control all aspects of feeding behavior. In this study, we show that chemosensory or thermal activation of the lip lasting for at least 5 min produces a distinct signal in the cephalic nerves consisting of action potentials of low amplitude. These small amplitude signals are clearly distinguishable from the large action potentials evoked by mechanosensory stimuli applied to the same area of the lip. Both types of sensory stimuli also evoke an increase in the firing frequency of the Retzius cells in segmental ganglia. However, the response recorded in the nerves and the Retzius cells during a maintained stimulus is not constant but decreases with an exponential time course. These results agree with our earlier observations on a semi-intact feeding preparation in which we showed that the firing frequency of the Retzius cell decreased as soon as the leech began to ingest its meal. Therefore, our data provide further evidence suggesting that it is unlikely that heat or chemical cues maintain the Retzius cell in an active state throughout the consummatory phase of feeding.  相似文献   

11.
Summary The proboscis extension response was used to prove the leg identity of chemosensory neurons in the homeotic appendage of theDrosophila mutantAntennapedia (Antp 73b). The data suggest that the homeotic appendage, which is morphologically characterized as a mesothoracic leg, corresponds to a mesothoracic leg as well when considering its gustatory responsiveness (Figs. 1A, B; 3A, B). The neuronal pathway which might mediate the reflex between homeotic chemoreceptors and motor neurons responsible for the proboscis extension is discussed.  相似文献   

12.
Behavioral and pharmacological studies in insects have suggested that the nitric oxide (NO)/cyclic GMP (cGMP) signaling pathway is involved in the formation of long-term memory (LTM) associated with olfactory learning. However, the target molecules of NO and the downstream signaling pathway are still not known. In this study, we investigated the action of NO on single voltage-dependent Ca2+ channels in the intrinsic neurons known as Kenyon cells within the mushroom body of the cricket brain, using the cell-attached configuration of the patch-clamp technique. Application of the NO donor S-nitrosoglutathione (GSNO) increased the open probability (NPO) of single Ca2+ channel currents. This GSNO-induced increase was blocked by ODQ, a soluble guanylate cyclase (sGC) inhibitor, suggesting that the NO generated by GSNO acts via sGC to raise cGMP levels. The membrane-permeable cGMP analog 8-Bro-cGMP also increased the NPO of single Ca2+ channel currents. Pretreatment of cells with KT5823, a protein kinase G blocker, abolished the excitatory effect of GSNO. These results suggest that NO augments the activity of single Ca2+ channels via the cGMP/PKG signaling pathway. To gain insight into the physiological role of NO, we examined the effect of GSNO on action potentials of Kenyon cells under current-clamp conditions. Application of GSNO increased the frequency of action potentials elicited by depolarizing current injections, indicating that NO acts as a modulator resulting in a stimulatory signal in Kenyon cells. We discuss the increased Ca2+ influx through these Ca2+ channels via the NO/cGMP signaling cascade in relation to the formation of olfactory LTM.  相似文献   

13.
A large number of contact chemoreceptors are located on the ovipositor valves of adult female grasshoppers. These receptors play an important role in many aspects of grasshopper life such as detecting the chemical composition of the soil before and during oviposition. It is surprising, however, to find these types of receptors on the ovipositor valves of instar larvae which are not able to oviposit. Thus, these receptors may serve functions other than to search for a suitable site for egg laying. Observation under the scanning electron microscope revealed the presence of uniporous basiconic contact chemoreceptors in addition to different types of trichoid mechanoreceptors on the ovipositor valve of lubber grasshopper 3rd instar larvae. Neuroanatomical studies have shown that these sensilla are multiply innervated, containing one mechanosensory neuron and four chemosensory neurons that project locally and intersegmentally. The tip recording technique from single basiconic sensilla demonstrated mechanosensory responses to deflections of the sensillum as well as gustatory activity when in contact with different chemical solutions. The electrophysiological studies have shown that these sensilla serve as contact chemoreceptors and not as olfactory receptors.  相似文献   

14.
Neurons in the cerebropleural ganglia (CPG), photoreceptors in the eye, optic ganglion cells, and statocyst hair cells of the nudibranch mollusk Hermissenda crassicornis responded in specific ways, as recorded intracellularly, to stimulation of the chemosensory pathway originating at the tentacular chemoreceptors as well as to stimulation of the visual pathway originating at the photoreceptors. Synaptic inhibition of photoreceptors occurs via the chemosensory pathway. The possible significance of such intersensory interaction is discussed with reference to preliminary investigation of the animal's gustatory behavior and possible neural mechanisms of behavioral choice.  相似文献   

15.
We created a single-compartment computer model of a CO2 chemosensory neuron using differential equations adapted from the Hodgkin-Huxley model and measurements of currents in CO2 chemosensory neurons from Helix aspersa. We incorporated into the model two inward currents, a sodium current and a calcium current, three outward potassium currents, an A-type current (IKA), a delayed rectifier current (IKDR), a calcium-activated potassium current (IKCa), and a proton conductance found in invertebrate cells. All of the potassium channels were inhibited by reduced pH. We also included the pH regulatory process to mimic the effect of the sodium-hydrogen exchanger (NHE) described in these cells during hypercapnic stimulation. The model displayed chemosensory behavior (increased spike frequency during acid stimulation), and all three potassium channels participated in the chemosensory response and shaped the temporal characteristics of the response to acid stimulation. pH-dependent inhibition of IKA initiated the response to CO2, but hypercapnic inhibition of IKDR and IKCa affected the duration of the excitatory response to hypercapnia. The presence or absence of NHE activity altered the chemosensory response over time and demonstrated the inadvisability of effective intracellular pH (pHi) regulation in cells designed to act as chemostats for acid-base regulation. The results of the model indicate that multiple channels contribute to CO2 chemosensitivity, but the primary sensor is probably IKA. pHi may be a sufficient chemosensory stimulus, but it may not be a necessary stimulus: either pHi or extracellular pH can be an effective stimuli if chemosensory neurons express appropriate pH-sensitive channels. The lack of pHi regulation is a key feature determining the neuronal activity of chemosensory cells over time, and the balanced lack of pHi regulation during hypercapnia probably depends on intracellular activation of pHi regulation but extracellular inhibition of pHi regulation. These general principles are applicable to all CO2 chemosensory cells in vertebrate and invertebrate neurons. hypercapnia; potassium channels; computer modeling; central chemoreceptors  相似文献   

16.
During the appetitive phase of feeding, hungry leeches detect a prey by the integration of signals perceived by different sensory systems. Earlier reports suggested that chemical or thermal sensory stimulation of the lip was associated with increased afferent activity in cephalic nerves connecting the lip to the central nervous system. These authors further suggested that this activity was relayed to Retzius cells in segmental ganglia, which then released serotonin to initiate and control all aspects of feeding behavior. In this study, we show that chemosensory or thermal activation of the lip lasting for at least 5 min produces a distinct signal in the cephalic nerves consisting of action potentials of low amplitude. These small amplitude signals are clearly distinguishable from the large action potentials evoked by mechanosensory stimuli applied to the same area of the lip. Both types of sensory stimuli also evoke an increase in the firing frequency of the Retzius cells in segmental ganglia. However, the response recorded in the nerves and the Retzius cells during a maintained stimulus is not constant but decreases with an exponential time course. These results agree with our earlier observations on a semi‐intact feeding preparation in which we showed that the firing frequency of the Retzius cell decreased as soon as the leech began to ingest its meal. Therefore, our data provide further evidence suggesting that it is unlikely that heat or chemical cues maintain the Retzius cell in an active state throughout the consummatory phase of feeding. © 2000 John Wiley & Sons, Inc. J Neurobiol 43: 304–311, 2000  相似文献   

17.
Previous work has shown that the carotid body glomus cells can function as glucose sensors. The activation of these chemoreceptors, and of its afferent nucleus in the brainstem (solitary tract nucleus - STn), induces rapid changes in blood glucose levels and brain glucose retention. Nitric oxide (NO) in STn has been suggested to play a key role in the processing of baroreceptor signaling initiated in the carotid sinus. However, the relationship between changes in NO in STn and carotid body induced glycemic changes has not been studied. Here we investigated in anesthetized rats how changes in brain glucose retention, induced by the local stimulation of carotid body chemoreceptors with sodium cyanide (NaCN), were affected by modulation of NO levels in STn. We found that NO donor sodium nitroprusside (SNP) micro-injected into STn completely blocked the brain glucose retention reflex induced by NaCN chemoreceptor stimulation. In contrast, NOS inhibitor N(ω)-nitro-L-arginine methyl ester (L-NAME) increased brain glucose retention reflex compared to controls or to SNP rats. Interestingly, carotid body stimulation doubled the expression of nNOS in STn, but had no effect in iNOS. NO in STn could function to terminate brain glucose retention induced by carotid body stimulation. The work indicates that NO and STn play key roles in the regulation of brain glucose retention.  相似文献   

18.
Blowfly proboscis extension during stimulation of labellar sugar receptors can be inhibited by the presence of salt. The possibility that the salt receptor might initiate a central nervous inhibitory state is investigated behaviourally and electrophysiologically using simultaneous recordings from labellar chemoreceptors and the extensor muscle of the haustellum. While a mixture of 100 mM sucrose and 4 M NaCl applied to a single sensillum does cause inhibition, the same compounds applied separately simultaneously on separate sensilla do not. A mixture of 100 mM sucrose and 4 M NaCl does not produce central nervous effects such as motor response decrement to repeated stimulation; nor does it produce an enhanced motor response resulting from cross-channel summation when applied simultaneously with 100 mM sucrose on another sensillum. These results argue that the inhibitory effect of mixtures containing sugar and salt can be explained by inhibition of the sugar receptor without having to invoke a central inhibitory mechanism.  相似文献   

19.
In Helix pomatia L. recordings have been made of 91 single neurons from the cerebral ganglia during peripheral thermal stimulation of the lip region. Temperatures ranged between 12 and 32°C. Different reactions to thermal stimulation could be observed: hyperpolarisation (n=43), depolarisation (n=9), increasing frequency of action potentials (n=10), decreasing frequency of action potentials (n=3). A number of cells did not show any changes in neuronal activity (n=26). The assumption that distinct cell clusters are responsible for the processing of thermal stimuli had to be rejected since cells responding to peripheral thermal stimulation were found in all parts of the ganglia.  相似文献   

20.
By the frequency-dependent release of serotonin, Retzius neurons in the leech modulate diverse behavioral responses of the animal. However, little is known about how their firing pattern is produced. Here we have analyzed the effects of mechanical stimulation of the skin and intracellular stimulation of mechanosensory neurons on the electrical activity of Retzius neurons. We recorded the electrical activity of neurons in ganglia attached to their corresponding skin segment by segmental nerve roots, or in isolated ganglia. Mechanosensory stimulation of the skin induced excitatory synaptic potentials (EPSPs) and action potentials in both Retzius neurons in a ganglion. The frequency and duration of responses depended on the strength and duration of the skin stimulation. Retzius cells responded after T and P cells, but before N cells, and their sustained responses correlated with the activity of P cells. Trains of five impulses at 10 Hz in every individual T, P, or N cell in isolated ganglia produced EPSPs and action potentials in Retzius neurons. Responses to T cell stimulation appeared after the first impulse. In contrast, the responses to P or N cell stimulation appeared after two or more presynaptic impulses and facilitated afterward. The polysynaptic nature of all the synaptic inputs was shown by blocking them with a high calcium/magnesium external solution. The rise time distribution of EPSPs produced by the different mechanosensory neurons suggested that several interneurons participate in this pathway. Our results suggest that sensory stimulation provides a mechanism for regulating serotonin-mediated modulation in the leech.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号