共查询到20条相似文献,搜索用时 15 毫秒
1.
The HCN-tetramer, a 'classic' of the prebiotic chemistry of HCN, is shown to undergo a remarkable reaction with acetaldehyde in slightly basic or neutral aqueous solution at room temperature. The reaction consists in an aldolization-type C,C-bond formation, accompanied by a (presumably aldehyde-catalyzed) hydration of one of the two nitrile groups and the formation of two cyclic aminal-type groupings, each of the latter incorporating an additional molecule of the aldehyde. Should this so far unexplored type of chemistry of the HCN-tetramer prove to have some generality, the finding might add a new dimension to the potential etiological relevance of this HCN-oligomer. 相似文献
2.
Elucidating the origin of life involves synthetic as well as analytical challenges. Herein, for the first time, we describe the use of gel electrophoresis and ultrafiltration to fractionate HCN polymers. Since the first prebiotic synthesis of adenine by Oró, HCN polymers have gained much interest in studies on the origins of life due to the identification of biomonomers and related compounds within them. Here, we demonstrate that macromolecular fractions with electrophoretic mobility can also be detected within HCN polymers. The migration of polymers under the influence of an electric field depends not only on their sizes (one‐dimensional electrophoresis) but also their different isoelectric points (two‐dimensional electrophoresis, 2‐DE). The same behaviour was observed for several macromolecular fractions detected in HCN polymers. Macromolecular fractions with apparent molecular weights as high as 250 kDa were detected by tricine‐SDS gel electrophoresis. Cationic macromolecular fractions with apparent molecular weights as high as 140 kDa were also detected by 2‐DE. The HCN polymers synthesized were fractionated by ultrafiltration. As a result, the molecular weight distributions of the macromolecular fractions detected in the HCN polymers directly depended on the synthetic conditions used to produce these polymers. The implications of these results for prebiotic chemistry will be discussed. 相似文献
3.
A nuclear mutant of Saccharomyces cerevisiae deficient in mitochondrial fumarase has been identified through the in vitro biochemical assay of enzyme activity after visual selection due to an increased acidification ability of its colonies. Cells of the fumarase-deficient mutant fermenting glucose accumulated extracellular fumaric acid. This accumulation was observed only in growing cultures and required functional mitochondrial electron transport from succinate dehydrogenase to oxygen. 相似文献
4.
The main objective of this study was to determine if the activities of the mitochondrial citric acid cycle enzymes are altered during the normal aging process. Flight muscle mitochondria of houseflies of different ages were used as a model system because of their apparent age-related decline in bioenergetic efficiency, evident as a failure of flying ability. The maximal activities of each of the citric acid cycle enzymes were determined in preparations of mitochondria from flies of relatively young, middle, and old age. Aconitase was the only enzyme exhibiting altered activity during aging. The maximal activity of aconitase from old flies was decreased by 44% compared to that from young flies while the other citric acid cycle enzymes showed no change in activity with age. It is suggested that the selective age-related decrease in aconitase activity is likely to contribute to a decline in the efficiency of mitochondrial bioenergetics, as well as result in secondary effects associated with accumulation of citrate and redox-active iron. 相似文献
5.
In a study to evaluate the structural elements essential for the antidiabetic activity of flavonoids, we synthesized two series of flavonoids, 5,7‐dihydroxyflavanones and 5,7‐dihydroxyflavones. In a screening for potential antidiabetic activity, most of the flavonoids showed a remarkable in vitro activity, and compounds 1f, 2d , and 3c were significantly more effective than the positive control, metformin. The biological activity was mainly affected by structural modification at the ring B moiety of the flavonoid skeleton. The results suggest that 5,7‐dihydroxyflavonoids can be considered as promising candidates in the development of new antidiabetic lead compounds. 相似文献
6.
We simulated in our laboratory a prebiotic environment where dry and wet periods were cycled. Under anhydrous conditions, lipid molecules present in the medium could form fluid lamellar matrices and work as organizing agents for the condensation of nucleic acid monomers into polymers. We exposed a mixture of 2′-deoxyribonucleoside 5′-monophosphates and a ssDNA oligomer template to this dry environment at 90 °C under a continuous gentle stream of CO2 and we followed it with rehydration periods. After five dry/wet cycles we were able to detect the presence of a product that was complementary to the template. The reaction had a 0.5% yield with respect to the template, as measured by staining with the Pico Green® fluorescent probe. Absent initial template, the product of the reaction remained below the detection limit. In order to characterize the fidelity of replication, the synthesized strand was ligated to adapters, amplified by PCR, and sequenced. The alignment of the sequenced DNA to the expected complementary sequence revealed that the misincorporation rate was 9.9%. We present these results as a proof of concept for the possibility of having non-enzymatic transfer of sequence information in a prebiotically plausible environment. 相似文献
7.
It is well established that calcium ionophore A 23187 induces acrosome reaction (AcR) of uncapacitated spermatozoa in the presence of extracellular Ca2+ ions. In the present study, we have investigated how extracellular energy substrates (glucose, pyruvate, and lactate) affect the ionophore-induced AcR of guinea pig spermatozoa. It was found that 0.3 microM concentration of A 23187 had the maximum effect to initiate AcR of guinea pig spermatozoa. Virtually no spermatozoa underwent their AcR when incubated in substrate-free modified Tyrode's medium containing 0.3 microM A 23187 and 2 mM Ca2+. At least one exogenous substrate is essential for the ionophore-induced AcR of spermatozoa. As for efficacy of the substrates, lactate was more effective than pyruvate and glucose. However, a better result was observed when lactate was added along with pyruvate. Malonate inhibited the ionophore-induced AcR but not the hyperactivated motility of spermatozoa. The mitochondrial electron transport chain blockers rotenone, antimycin, and oligomycin failed to inhibit AcR, although in the presence of these blockers spermatozoa were unable to show hyperactivated motility. These results suggest that the mitochondrial citric acid cycle, not the electron transport chain, is probably the energy source for ionophore-induced AcR of guinea pig spermatozoa. 相似文献
8.
Schwartz AW 《化学与生物多样性》2007,4(4):656-664
Attempts to model the spontaneous chemistry which presumably preceded the origin of life on Earth commonly result in the production of intractably complex mixtures of organic compounds. It is, therefore, difficult to understand how any kind of evolutionary process might have begun. A number of potential solutions to this well-known and frustrating problem have been offered in the literature over the years. The present contribution briefly reviews and evaluates some of the more promising possibilities. 相似文献
9.
Summary Amino acids are activated by reaction with adenosine 5-phosphorimidazolide in aqueous imidazole buffers. If adenosine 5-(O-methylphosphate), an analogue of the 3-terminus of t-RNA is present, 2(3)-O-aminoacyladenosine 5-(O-methylphosphate) is formed. Fifteen percent of this compound accumulated at pH 5.8, but less was formed at higher pHs. The highest efficiency of utilization of ImpA attained in our experiments was about 24%. Analogous reactions occured with several other amino acids, including a number that have functional side-chains.Abbreviations pA adenosine 5-monophosphate - MepA adenosine-5-(O-methylphosphate) - ImpA adenosine-5-phosphorimidazolide - A adenosine - MepA-ala 2(3)-O-alanyl-adenosine-5-(O-methylphosphate) - ala-N-pA adenylyl-(5 N)-alanine - ImH imidazole - DKP diketopiperazine 相似文献
10.
An achiral nucleotide analog based on barbituric acid has been synthesized. The analog, which is 5,5-di(2-phosphoethyl)barbituric acid, undergoes extensive oligomerization in aqueous solution, when activated, to produce pyrophosphate-linked chains. In contrast to a number of other bisphosphorylated nucleoside analogs which have been studied, the compound has little tendency to cyclize. The possible prebiotic implications are discussed. Correspondence to: AM. Schwartz 相似文献
11.
Activity levels of pyruvate dehydrogenase, enzymes of citric acid cycle, aspartate and alanine aminotransferases were estimated in mitochondria, synaptosomes and cytosol isolated from brains of normal rats and those injected with acute and subacute doses of ammonium acetate. In mitochondria isolated from animals treated with acute dose of ammonium acetate, there was an elevation in the activities of pyruvate, isocitrate and succinate dehydrogenases while the activities of malate dehydrogenase (malateoxaloacetate), aspartate and alanine aminotransferases were suppressed. In subacute conditions a similar profile of change was noticed excepting that there was an elevation in the activity of -ketoglutarate dehydrogenase in mitochondria. In the synaptosomes isolated from animals administered with acute dose of ammonium acetate, there was an increase in the activities of pyruvate, isocitrate, -ketoglutarate and succinate dehydrogenases while the changes in the activities of malate dehydrogenase, asparatate and alanine amino transferases were suppressed. In the subacute toxicity similar changes were observed in this fraction except that the activity of malate dehydrogenase (oxaloacetatemalate) was enhanced. In the cytosol, pyruvate dehydrogenase and other enzymes of citric acid cycle except malate dehydrogenase were enhanced in both acute and subacute ammonia toxicity though their activities are lesser than that of mitochondria. In this fraction malate dehydrogenase (oxaloacetatemalate), was enhanced while activities of malate dehydrogenase (malateoxaloacetate), aspartate, and alanine aminotransferases were suppressed in both the conditions. Based on these results it is concluded that the decreased activities of malate dehydrogenase (malateoxaloacetate) in mitochondria and of aspartate, aminotransferase in mitochondria and cytosol may be responsible for the disruption of malate-aspartate, shuttle in hyperammonemic state. Possible existence of a small vulnerable population of mitochondria in brain which might degenerate and liberate their contents into cytosol in hyperammonemic states is also suggested. 相似文献
12.
Kasumov T Cendrowski AV David F Jobbins KA Anderson VE Brunengraber H 《Archives of biochemistry and biophysics》2007,463(1):110-117
Anaplerosis from propionate was investigated in rat hearts perfused with 0-2mM [(13)C(3)]propionate and physiological concentrations of glucose, lactate, and pyruvate. The data show that when the concentration of [(13)C(3)]propionate was raised from 0 to 2mM, total anaplerosis increased from 5% to 16% of the turnover of citric acid cycle intermediates. Then, [(13)C(3)]propionate abolished anaplerosis from endogenous substrates, glucose, lactate, and pyruvate. Also, while the contents of propionyl-CoA and methylmalonyl-CoA increased with [(13)C(3)]propionate concentration, the content of succinyl-CoA decreased, presumably via activation of succinyl-CoA hydrolysis by a decrease in free CoA. Under our conditions, [(13)C(3)]propionate was a purely anaplerotic substrate since there was no labeling of mitochondrial acetyl-CoA, reflected by the labeling of the acetyl moiety of citrate. 相似文献
13.
Ida Helene Steen Marit Steine Madsen Nils-Kåre Birkeland Torleiv Lien 《FEMS microbiology letters》1998,160(1):75-79
NADP+-specific isocitrate dehydrogenase (EC 1.1.1.42) was purified to homogeneity from the sulfate-reducing bacterium Desulfobacter vibrioformis, and shown to be a monomeric protein with a molecular mass of 80 kDa. The pH and temperature optima were 8.5 and 45°C, respectively. The N-terminal amino acid sequence (Thr, Glu, Thr, Ile, Arg, Trp, Thr, X, Thr, Asp, Glu, Ala, Pro, Leu, Leu, Ala, Thr) showed similarity with that of other known monomeric isocitrate dehydrogenases. Catalytically active isocitrate dehydrogenase from D. vibrioformis was obtained by activity staining after SDS-PAGE and removal of SDS from the gel. This technique revealed a NADP+-dependent monomeric enzyme in other Desulfobacter spp., Desulfuromonas acetoxidans and Chlorobium tepidium. These findings imply that monomeric isocitrate dehydrogenases are present in distantly related bacteria and indicate an early evolution of monomeric isocitrate dehydrogenases in the bacterial lineage. 相似文献
14.
Malonate is an effective inhibitor of succinate dehydrogenase in preparations from brain and other organs. This property was reexamined in isolated rat brain mitochondria during incubation with L-glutamate. The biosynthesis of aspartate was determined by a standard spectrofluorometric method and a radiometric technique. The latter was suitable for aspartate assay after very brief incubations of mitochondria with glutamate. At a concentration of 1 mM or higher, malonate totally inhibited aspartate biosynthesis. At 0.2 mM, the inhibitory effect was still present. It is thus possible that the natural concentration of free malonate in adult rat brain of 192 nmol/g wet weight exerts an effect on citric acid cycle reactions in vivo. The inhibition of glutamate utilization by malonate was readily overcome by the addition of malate which provided oxaloacetate for the transamination of glutamate. The reaction was accompanied by the accumulation of 2-oxoglutarate. The metabolism of glutamate was also blocked by inclusion of arsenite and gamma-vinyl-gamma-aminobutyric acid but again added malate allowed transamination to resume. When arsenite and gamma-vinyl-gamma-aminobutyric acid were present, the role of malonate as an inhibitor of malate entry into the mitochondrial interior could be determined without considering the inhibition of succinate dehydrogenase. The apparent Km and Vmax values for uninhibited malate entry were 0.01 mM and 100 nmol/mg protein/min, respectively. Malonate was a competitive inhibitor of malate transport (Ki = 0.75 mM). 相似文献
15.
Trotter PJ Adamson AL Ghrist AC Rowe L Scott LR Sherman MP Stites NC Sun Y Tawiah-Boateng MA Tibbetts AS Wadington MC West AC 《Archives of biochemistry and biophysics》2005,442(1):21-32
Utilization of fatty acids such as oleic acid as sole carbon source by the yeast Saccharomyces cerevisiae requires coordinated function of peroxisomes, where the fatty acids are degraded, and the mitochondria, where oxidation is completed. We identified two mitochondrial oxodicarboxylate transporters, Odc1p and Odc2p, as important in efficient utilization of oleic acid in yeast [Tibbetts et al., Arch. Biochem. Biophys. 406 (2002) 96-104]. Yet, the growth phenotype of odc1delta odc2delta strains indicated that additional transporter(s) were also involved. Here, we identify two putative transporter genes, YMC1 and YMC2, as able to suppress the odc1delta odc2delta growth phenotype. The mRNA levels for both are elevated in the presence of glycerol or oleic acid, as compared to glucose. Ymc1p and Ymc2p are localized to the mitochondria in oleic acid-grown cells. Deletion of all four transporters (quad mutant) prevents growth on oleic acid as sole carbon source, while growth on acetate is retained. It is known that the glutamate-sensitive retrograde signaling pathway is important for upregulation of peroxisomal function in response to oleic acid and the oxodicarboxylate alpha-ketoglutarate is transported out of the mitochondria for synthesis of glutamate. So, citric acid cycle function and glutamate synthesis were examined in transporter mutants. The quad mutant has significantly decreased citrate synthase activity and whole cell alpha-ketoglutarate levels, while isocitrate dehydrogenase activity is unaffected and glutamate dehydrogenase activity is increased 10-fold. Strains carrying only two or three transporter deletions exhibit intermediate affects. 13C NMR metabolic enrichment experiments confirm a defect in glutamate biosynthesis in the quad mutant and, in double and triple mutants, suggest increased cycling of the glutamate backbone in the mitochondria before export. Taken together these studies indicate that these four transporters have overlapping activity, and are important not only for utilization of oleic acid, but also for glutamate biosynthesis. 相似文献
16.
17.
Dolezalova H Shankar G Huang MC Bikle DD Goetzl EJ 《Journal of cellular biochemistry》2003,88(4):732-743
G protein-coupled receptors (GPCRs) for lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P) transduce signals to many functions of normal cells. Most human cancer cells upregulate S1P and LPA GPCRs, in patterns distinctive for each type of tumor. The findings that 1-alpha, 25-dihydroxy-vitamin D(3) (VD3) and all-trans retinoic acid (RA) differentially alter expression of the predominant S1P(3) (Edg-3) R and S1P(2) (Edg-5) R in human breast cancer cells (BCCs) permitted analyses of their individual activities, despite a lack of selective pharmacological probes. S1P-evoked increases in [Ca(2+)](i) in S1P(3) R-predominant BCCs were suppressed by concentrations of VD3 and RA which decreased expression of S1P(3) Rs, despite RA-induced increases in S1P(2) Rs. S1P-elicited chemokinetic migration of S1P(3) R-predominant BCCs across a type IV collagen-coated micropore filter also was inhibited by concentrations of VD3 and RA which decreased expression of S1P(3) Rs. The RA-induced increase in expression of S1P(2) Rs did not prevent suppression by RA of S1P-elicited chemokinesis, which appears to be mediated by S1P(3) Rs, but instead exposed S1P(2) R-mediated inhibition of epidermal growth factor-stimulated chemotaxis of BCCs. In contrast, expression of the predominant LPA(2) Rs, LPA-evoked increase in [Ca(2+)](i) and LPA-stimulated chemokinetic migration were suppressed concomitantly by RA but not VD3. Thus two structurally-homologous S1P Rs of BCCs differ in coupling to [Ca(2+)](i) signaling and have opposite effects on protein growth factor-stimulated chemotaxis. 相似文献
18.
Marta Ruiz‐Bermejo José L. de la Fuente Celia Rogero César Menor‐Salván Susana Osuna‐Esteban José A. Martín‐Gago 《化学与生物多样性》2012,9(1):25-40
The data presented here provide a novel contribution to the understanding of the structural features of HCN polymers and could be useful in further development of models for prebiotic chemistry. The interpretation of spectroscopic and analytical data, along with previous results reported by other authors, allowed us to propose a mechanism for the aqueous polymerization of HCN from its primary and simplest isolated oligomer, the diaminomaleonitrile (DAMN) tetramer. We suggest that ‘insoluble black HCN polymers’ are formed by an unsaturated complex matrix, which retains a significant amount of H2O and important bioorganic compounds or their precursors. This polymeric matrix can be formed by various motifs of imidazoles and cyclic amides, among others. The robust formation of HCN polymers assayed under several conditions seems to explain the plausible ubiquity of these complex substances in space. 相似文献
19.
Xiaoyan Liu Jiaxing Xu Jun Xia Jinshun Lv Zhen Wu Yuanfang Deng 《Engineering in Life Science》2016,16(5):424-431
Yarrowia lipolytica is able to secrete large amounts of citric acid (CA), which is greatly affected by the dissolved oxygen concentration (DOC) in the fermentation medium. In this study, oleic acid was selected as oxygen‐vector to improve DOC during CA fermentation. When 2% (v/v) of oleic acid was added to the culture broth, higher DOC (>42.1%) was determined throughout the CA synthesis phase. The yield of CA reached a maximum of 32.1 g/L (25.4% higher than the control) and the biomass was 8.8 g/L. The substrate uptake rate, products formation rate and key enzyme activities were also determined, and the results indicated that CA synthesis was strengthened with oleic acid addition. Furthermore, it was detected that oleic acid could be assimilated by the cells, which means that oleic acid could be served both as oxygen‐vector and co‐substrate for CA synthesis by Y. lipolytica. In a bioreactor with working volume of 3 L, the highest concentration of CA reached to 36. 4 g/L in the presence of 2% (v/v) oleic acid after 192 h of fermentation. These results confirmed that oleic acid could be applied in the large‐scale production of CA by Y. lipolytica. 相似文献
20.
Guido Maura Stefano Thellung Gian Carlo Andrioli Antonio Ruelle Maurizio Raiteri 《Journal of neurochemistry》1993,60(3):1179-1182
Abstract: Primary cultures of cerebral cortical astrocytes were incubated with [U-13 C]glutamate (0.5 m M ) in modified Dulbecco's medium for 2 h. Perchloric acid (PCA) extracts of the cells as well as redissolved lyophilized media were subjected to NMR spectroscopy to identify 13 C-labeled metabolites. NMR spectra of the PCA extracts exhibited distinct multiplets for glutamate, aspartate, glutamine, and malate. The culture medium showed peaks for a multitude of compounds released from the astrocytes, among which lactate, glutamine, alanine, and citrate were readily identifiable. For the first time incorporation of label into lactate from glutamate was clearly demonstrated by doublet formation in the C-3 position and two doublets in the C-2 position of lactate. This labeling pattern can only occur by incorporation from glutamate, because natural abundance will only produce singlets in proton-decoupled 13 C spectra. Glutamine, released into the medium, was labeled uniformly to a large extent, but the C-3 position not only showed the expected apparent triplet but also a doublet due to 13 C incorporation into the C-4 position of glutamine. The doublet accounted for 11% of the total label in the glutamine synthesized and released within the incubation period. The corresponding labeling pattern of [13 C]glutamate in the PCA extracts showed that 19% of the glutamate contained 12 C. Labeling of lactate, citrate, malate, and aspartate as well as incorporation of 12 C into uniformly labeled glutamate and glutamine could only arise via the tricarboxylic acid cycle. The relative amount of glutamate metabolized via this route is at least 70% as calculated from the areas of the C-3 resonances of these compounds. Only a maximum of 30% was converted to glutamine directly. 相似文献