首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In some songbirds perturbing auditory feedback can promote changes in song structure well beyond the end of song learning. One factor that may drive vocal change in such deafened birds is the ongoing addition of new vocal-motor neurons into the song system. Without auditory feedback to guide their incorporation, the addition of these new neurons could disrupt the established song pattern. To assess this hypothesis, the authors determined if neuronal recruitment into the vocal motor nucleus HVC is affected by neural signals that influence vocal change in adult deafened birds. Such signals appear to be conveyed via LMAN, a nucleus in the anterior forebrain that is necessary for vocal change after deafening. Here the authors tested whether LMAN lesions might restrict song degradation after deafening by reducing the addition or survival of new HVC neurons that would otherwise corrupt the ongoing song pattern. Using [3H]thymidine autoradiography to identify neurons generated in adult zebra finches, it was shown here that LMAN lesions do not reduce the number or percent of new HVC neurons surviving for either several weeks or months after [3H]thymidine labeling. However, the authors confirmed previous reports that LMAN lesions restrict vocal change after deafening. These data suggest that neurons incorporated into the adult HVC may form behaviorally adaptive connections without requiring auditory feedback, and that any role such neurons may play in promoting vocal change after adult deafening requires anterior forebrain pathway output.  相似文献   

2.
3.
4.
Mutations of FOXP2 are associated with altered brain structure, including the striatal part of the basal ganglia, and cause a severe speech and language disorder. Songbirds serve as a tractable neurobiological model for speech and language research. Experimental downregulation of FoxP2 in zebra finch Area X, a nucleus of the striatal song control circuitry, affects synaptic transmission and spine densities. It also renders song learning and production inaccurate and imprecise, similar to the speech impairment of patients carrying FOXP2 mutations. Here we show that experimental downregulation of FoxP2 in Area X using lentiviral vectors leads to reduced expression of CNTNAP2, a FOXP2 target gene in humans. In addition, natural downregulation of FoxP2 by age or by singing also downregulated CNTNAP2 expression. Furthermore, we report that FoxP2 binds to and activates the avian CNTNAP2 promoter in vitro. Taken together these data establish CNTNAP2 as a direct FoxP2 target gene in songbirds, likely affecting synaptic function relevant for song learning and song maintenance.  相似文献   

5.
Sensory feedback is essential for acquiring and maintaining complex motor behaviors, including birdsong. In zebra finches, auditory feedback reaches the song control circuits primarily through the nucleus interfacialis nidopalii (Nif), which provides excitatory input to HVC (proper name)—a premotor region essential for the production of learned vocalizations. Despite being one of the major inputs to the song control pathway, the role of Nif in generating vocalizations is not well understood. To address this, we transiently inactivated Nif in late juvenile zebra finches. Upon Nif inactivation (in both hemispheres or on one side only), birds went from singing stereotyped zebra finch song to uttering highly variable and unstructured vocalizations resembling sub‐song, an early juvenile song form driven by a basal ganglia circuit. Simultaneously inactivating Nif and LMAN (lateral magnocellular nucleus of the anterior nidopallium), the output nucleus of a basal ganglia circuit, inhibited song production altogether. These results suggest that Nif is required for generating the premotor drive for song. Permanent Nif lesions, in contrast, have only transient effects on vocal production, with song recovering within a day. The sensorimotor nucleus Nif thus produces a premotor drive to the motor pathway that is acutely required for generating learned vocalizations, but once permanently removed, the song system can compensate for its absence. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1213–1225, 2016  相似文献   

6.
We investigated the development of spiny neurons in the lateral magnocellular nucleus of the anterior neostriatum before, during, and after song learning in male zebra finches (Taeniopygia guttata). The frequency of dendritic spines, dendritic field size, and branching characteristics were quantified at different ages in Golgi-stained tissue using a three-dimensional computerized tracing system. During development, overall spine frequencies increase between 3 and 5 weeks and decrease thereafter. In particular, spine frequencies of middle segments decrease significantly by 14% between 5 and 7 weeks posthatching (p = 0.017). A further reduction of 48% occurs between 7 weeks and adulthood (p < 0.001), resulting in a spine reduction of 56% on middle segments between 35 days of age and adulthood. In addition to the reduction of spine frequencies, we find regressive events also on some of the neuronal parameters that we have quantified. In general, dendrites of adult animals terminate closer to the cell body than those of 7-, 5-, or 3-week-old birds. Whereas no changes in segment length of first- and second-order dendrites have been identified, third-order dendrites end 19% closer to the cell body in adults than in younger birds (p < 0.024). Second-order dendrites in adult animals branch less frequently than in 3-week-old animals (35%, p = 0.017). There is also a trend of a smaller number of tertiary branches in adulthood compared with 3-week-old birds (41%, p = 0.060). The morphological changes may be related to the function of this nucleus and the sensitive phase for song acquisition. © 1995 John Wiley & Sons, Inc.  相似文献   

7.
The anterior forebrain (AF) pathway of songbirds has an essential but poorly understood function during song learning, a process requiring auditory experience. Consistent with a role in processing auditory information, two nuclei of the AF, the lateral magnocellular nucleus of the anterior neostriatum (lMAN) and Area X (X), contain some of the most complex auditory neurons known. In adult zebra finches, these neurons are strongly selective for both spectral and temporal properties of song: They respond more robustly to the bird's own song (BOS) than to songs of conspecific individuals, and they respond less well to BOS if it is played in reverse. lMAN and X neurons of young finches early in the process of song learning (30–45 days of age) are also song responsive, but lack the song and order selectivity present in adult birds. By an intermediate stage of learning (60 days), when birds have experience of both tutor song and their own developing (plastic) song, AF neurons have significant song and order selectivity for both tutor song and BOS (in this case, plastic song). The degree of BOS selectivity is still less than that found in adults, however. In addition, neurons at 60 days are heterogenous in their preference for BOS versus tutor song: Most prefer BOS, some prefer tutor song, and others respond equally to both songs. The selectivity of adult AF auditory neurons therefore arises rapidly during development from neurons that are initially unselective. These neurons are one of the clearest examples of experience-dependent acquisition of complex stimulus selectivity. Moreover, the neural selectivity for both BOS and tutor song at 60 days raises the possibility that experience of both songs during learning contributes to the properties of individual AF neurons. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 694–709, 1997  相似文献   

8.
The brain circuitry that controls song learning and production undergoes marked changes in morphology and connectivity during the song learning period in juvenile zebra finches, in parallel to the acquisition, practice and refinement of song. Yet, the genetic programs and timing of regulatory change that establish the neuronal connectivity and plasticity during this critical learning period remain largely undetermined. To address this question, we used in situ hybridization to compare the expression patterns of a set of 30 known robust molecular markers of HVC and/or area X, major telencephalic song nuclei, between adult and juvenile male zebra finches at different ages during development (20, 35, 50 days post‐hatch, dph). We found that several of the genes examined undergo substantial changes in expression within HVC or its surrounds, and/or in other song nuclei. They fit into broad patterns of regulation, including those whose expression within HVC during this period increases (COL12A1, COL 21A1, MPZL1, PVALB, and CXCR7) or decreases (e.g., KCNT2, SAP30L), as well as some that show decreased expression in the surrounding tissue with little change within song nuclei (e.g. SV2B, TAC1). These results reveal a broad range of molecular changes that occur in the song system in concert with the song learning period. Some of the genes and pathways identified are potential modulators of the developmental changes associated with the emergence of the adult properties of the song control system, and/or the acquisition of learned vocalizations in songbirds. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 75: 1315–1338, 2015  相似文献   

9.
The songbird has emerged as an important model for study of brain-behavior relationships by virtue of its rich natural advantages and from the pioneering efforts of explorers using anatomical and behavioral approaches. Now, molecular biology is providing a new and complementary paradigm for discerning songbird brain organization and function. Here, I review the work over the last 10 years that has laid the foundation for approaching songbird biology from the molecular perspective. As a result of this work, specific hypotheses can now be framed and tested regarding the mechanisms behind song circuit formation, behavioral plasticity, and the boundaries of adaptability. Age-related changes in more than 15 molecules have been observed in the song system of juvenile zebra finches, and these changes seem to define specific phases in circuit development. In adult songbirds, ordinary song-related activities such as singing and listening cause dramatic increases in gene expression in brain areas specific to each activity. The sensitivity of gene activation is modulated as a result of experience in adulthood and also changes during juvenile song learning. These studies have provided unexpected insights into the functional organization of the song circuit and the potential role of extrinsic modulatory systems in directing and limiting plastic change in the brain. With this rich base of knowledge, and techniques of gene manipulation on the horizon, answers to old questions seem within our reach: What sets the boundaries of neural plasticity? What limits learning? © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 549–571, 1997  相似文献   

10.
11.
Summary The distribution of parvalbumin (PV) within neurons of the vocal motor nucleus hyperstriatum ventralepars caudalis (HVc) was investigated in the forebrain of adult male zebra finches by means of light and electron microscopy using the indirect immunoperoxidase technique. Parvalbumin-reaction product was located in the amorphous material of perikarya, dendrites and nuclei, and associated to microtubuli, postsynaptic densities and intracellular membranes; it was found in some axons and Gray type-2 boutons, but rarely in type-1 boutons and never in the Golgi apparatus. These observations suggest that parvalbumin may regulate calcium-dependent processes at the postsynaptic membrane and in the cytosol. Furthermore, the partial association of parvalbumin to microtubuli points to an involvement in calcium-dependent tubular functions. Calcium currents and microtubular assembly or transport may be relevant for the known functions of HVc in song learning.  相似文献   

12.
13.
  相似文献   

14.
Neurogenesis is the process of neuron generation, which occurs not only during embryonic development but also in restricted niches postnatally. One such region is called the subventricular zone (SVZ), which gives rise to new neurons in the olfactory bulb (OB). Neurons that are born postnatally migrate through more complex territories and integrate into fully functional circuits. Therefore, differences in the differentiation of embryonic and postnatally born neurons may exist. Dendritogenesis is an important process for the proper formation of future neuronal circuits. Dendritogenesis in embryonic neurons cultured in vitro was shown to depend on the mammalian target of rapamycin (mTOR). Still unknown, however, is whether mTOR could regulate the dendritic arbor morphology of SVZ‐derived postnatal OB neurons under physiological conditions in vivo. The present study used in vitro cultured and differentiated SVZ‐derived neural progenitors and found that both mTOR complex 1 and mTOR complex 2 were required for the dendritogenesis of SVZ‐derived neurons. Furthermore, using a combination of in vivo electroporation of neural stem cells in the SVZ and genetic and pharmacological inhibition of mTOR, it was found that mTOR was crucial for the growth of basal and apical dendrites in postnatally born OB neurons under physiological conditions and contributed to the stabilization of their basal dendrites. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1308–1327, 2016  相似文献   

15.
The higher vocal center (HVC) of the songbird forebrain exhibits persistent neurogenesis in adulthood, particularly in a region of the mediocaudal neostriatum that is associated with a subventricular layer of estrogen receptive cells. We asked whether estrogens might influence adult neurogenesis, by assessing the effect of ovariectomy on HVC neuronal production in the adult female canary. Fifteen 1-year-old females were separated into groups of ovariectomized, estradiol-replaced ovariectomized, and gonadally intact birds. To label dividing cells and their progency, the birds were given [3H]thymidine for 8 days, killed 32 days later, and their brains autoradiographed. A significant rise was noted in the number of HVC neurons per section in estradiol-treated birds relative to the untreated control birds. The number of [3H]-thymidine-labeled HVC neurons was also higher in the estrogen-treated birds; however, the neuronal labeling index (LI) did not vary as a function of estradiol replacement, as the total number of HVC neurons rose in parallel with the added new neurons. In contrast, the neuronal LI did rise as a result of ovariectomy, and this ovariectomy-associated increase in the LI was not reversed by estradiol. Among non-neuronal cell types, the endothelial LI was higher in estrogen-treated birds than in their untreated counterparts, suggesting estrogen-associated angiogenesis. Radioimmunoassay confirmed that serum estradiol was reduced in the castrated birds. Since estrogen appeared to promote the survival of [3H]thymidine+ neurons, we next sought to determine whether estrogen acted directly on the newly generated neurons, or rather indirectly through an intermediary cell population. To this end, we asked whether the new neurons or their precursors expressed estrogen receptor immunoreactivity (ER-IR). Five adult male canaries were given [3H]thymidine for periods ranging from 2 to 28 days, killed at varying times up to 3 weeks therafter, then probed for ER-IR and autoradiographed. [3H]thymidine+ cells displayed no detectable ER-IR within their first 4 weeks of postmitotic life. Rather, during migration from the ventricular zone (VZ), the new neurons traversed a layer of mitotically quiescent, ER+ subventricular cells. Double labeling for ER-IR and cell-type selective antigens confirmed that these ER+ cells were neurons. These results indicate that the early survival of new neurons in the adult songbird HVC is promoted by estrogen, and may be mediated by the estrogen-stimulated paracrine release of neurotrophic agents by ER-IR subventricular neurons. Our data suggest that estrogen's promotion of neuronal survival may operate concurrently with an estrogen-independent ovarian suppression of neuronal mitogenesis.  相似文献   

16.
During development, elimination of excess cells through programmed cell death (PCD) is essential for the establishment and maintenance of the nervous system. In many brain regions, development and major histogenesis continue beyond postnatal stages, and therefore, signs of neurogenesis and PCD are frequently observed in these postnatal brain regions. Furthermore, some brain regions maintain neurogenic potential throughout life, and continuous genesis and PCD play critical roles in sculpting these adult neural circuits. Although similar regulatory mechanisms that control PCD during development appear to also control PCD in the adult brain, adult-generated neurons must integrate into mature neural circuits for their survival. This novel requirement appears to result in unique features of PCD in the adult brain. In this article, we summarize recent findings related to PCD in the early postnatal and adult brain in rodents.  相似文献   

17.
In the leech embryo, neurogenesis takes place within the context of a stereotyped cell lineage. The prospective germ layers are formed during the early cleavage divisions by the reorganization and segregation of circumscribed domains within the cytoplasm of the fertilized egg. The majority of central neurons arise from the ectoderm, and central neuroblasts are distributed throughout both the length and width of each ectodermal hemisegment. Much of the segmental ganglion arises from medial neuroblasts, but there are also lateral ectodermal neuroblasts and mesodermal neuroblasts that migrate into the nascent ganglion from peripheral sites of origin. Some of these migratory cells are committed to neurogenesis prior to reaching their central destination. In addition, the leech embryo exhibits a secondary phase of neurogenesis that is restricted to the two sex segment ganglia. Secondary neurogenesis requires that a mitogenic or trophic signal be conveyed from the peripherally located male sex organ to a particular set of centrally located neuroblasts, apparently via already differentiated central neurons that innervate the sex organ. The differential specification of neuronal phenotypes within the leech central nervous system occurs in multiple steps. Some aspects of a neuron's identity are already specified at the time of its terminal cell division and would seem to involve the lineal inheritance of developmental commitments made by one of the neuron's progenitors. This lineage-based identity can then be modified by interactions between the postmitotic neuron and other neurons or non-neuronal target cells encountered during its terminal differentiation. © 1995 John Wiley & Sons, Inc.  相似文献   

18.
《Neuron》2022,110(19):3139-3153.e6
  1. Download : Download high-res image (186KB)
  2. Download : Download full-size image
  相似文献   

19.
20.
The important role played by the gut microbiota in host immunity is mediated, in part, through toll-like receptors (TLRs). We evaluated the postnatal changes in expression of TLR2 and TLR4 in the murine small intestine and assessed how expression is influenced by gut microbiota. The expression of TLR2 and TLR4 in the murine small intestine was highly dynamic during development. The changes were especially profound during the suckling period, with the maximal mRNA levels detected in the mid-suckling period. Immunohistochemical and flow-cytometric analyses indicated that the changes in TLR2 and TLR4 expression involve primarily epithelial cells. The germ-free mice showed minor changes in TLR2/TLR4 mRNA and TLR2 protein during the suckling period. This study demonstrated that the postnatal expression of TLR2 and TLR4 in small intestinal epithelial cells is dynamic and depends on the presence of commensal intestinal microbiota.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号