共查询到20条相似文献,搜索用时 0 毫秒
1.
The uptake of 1,3-[2,3-(14)C]-butadiene and its disposition, measured as radioactivity in urine, faeces, exhaled volatiles and CO(2) during and following 6 h whole body exposure to 20 ppm butadiene has been investigated in male Sprague-Dawley rats and B6C3F1 mice. Whilst there were similarities between the two species, the uptake and metabolic distribution of butadiene were somewhat different for rats and mice. The major differences observed were in the urinary excretion of radioactivity and in the exhalation of 14C-CO(2). After 42 h from the start of exposure, 51.1% of radioactivity was eliminated in rat urine compared with 39.5% for mouse urine. 34.9% of the recovered radioactivity was exhaled by rats as 14C-CO(2), compared with 48.7% by mice. Excretion of radioactivity in faeces was similar for both species (3.8% for rats and 3.4% for mice). The tissue concentrations of 14C-butadiene equivalents measured in liver, testes, lung and blood of exposed mice were 0.493, 0460, 0.457, and 1.626 nmol/g tissue, respectively. The values for the corresponding rat tissues were 0.869, 0.329, 0.457, and 1.626 nmol butadiene equivalents/g tissue, respectively. For rats, 6.2% of recovered radioactivity (0.288 nmol butadiene equivalents/g tissue) was retained in carcasses whereas for mice the amount was 3.6% (0.334 nmol butadiene equivalents/g tissue). There were also some significant differences between the metabolic conversion of 1,3-[2,3-(14)C]-butadiene and excretion by mice following the 20 ppm whole body exposure compared to previously reported data for nose-only exposure to 200 ppm butadiene [Richardson et al., Toxicol. Sci. 49 (1999) 186]. The main difference between the high- and low-exposure studies was in the exhalation of 14C-CO(2). At the 200 ppm exposure, 40% of the radioactivity was exhaled as 14C-CO(2) by rats whereas 6% was measured by this route for mice. The proportional conversion of butadiene to CO(2) by mice was significantly greater at the low exposure concentration compared with that reported for the higher concentration. This shift was not observed for rats. The difference between species could be caused by a saturation of metabolism in mice between 20 and 200 ppm for the pathways leading to CO(2). Restraint or error in collection of CO(2) in the 200 ppm study could also be factors. 相似文献
2.
Male Sprague-Dawley rats and B6C3F1 mice were exposed to either a single 6h or a multiple (5) daily (6h) nose-only dose of 1,3-[2,3-(14)C]-butadiene at exposure concentrations of nominally 1, 5 or 20 ppm. The aim was to compare the results with those from a similar previous study at 200 ppm. DNA isolated from liver, lung and testis of exposed rats and mice was analysed for the presence of butadiene related adducts, especially the N7-guanine adducts. Total radioactivity present in the DNA from liver, lung and testis was quantified and indicated more covalent binding of radioactivity for mouse tissue DNA than rat tissue DNA. Following release of the depurinating DNA adducts by neutral thermal hydrolysis, the liberated depurinated DNA adducts were measured by reverse phase HPLC coupled with liquid scintillation counting. The guanine adduct G4, assigned as N7-(2,3,4-trihydroxybutyl)- guanine, was the major adduct measured in liver, lung and testis DNA in both rats and mice. Higher levels of G4 were detected in all mouse tissues compared with rat tissue. The dose-response relationship for the formation of adduct G4 was approximately linear for all tissues studied for both rats and mice exposed in the 1-20 ppm range. The formation of G4 in liver tissue was about three times more effective for mouse than rat in this exposure range. Average levels of adduct G4 measured in liver DNA of rats and mice exposed to 5 x 6 h 1, 5 and 20 ppm 1,3-[2,3-(14)C]-butadiene were, respectively, for rats: 0.79 +/- 0.30, 2.90 +/- 1.19, 16.35 +/- 4.8 adducts/10(8) nucleotides and for mice: 2.23 +/- 0.71, 12.24 +/- 2.15, 48.63 +/- 12.61 adducts/10(8) nucleotides. For lung DNA the corresponding values were for rats: 1.02 +/- 0.44, 3.12 +/- 1.06, 17.02 +/- 4.07 adducts/10(8) nucleotides, and for mice: 3.28 +/- 0.32, 14.04 +/- 1.55, 42.47 +/- 13.12 adducts/10(8) nucleotides. Limited comparative data showed that the levels of adduct G4 formed in liver and lung DNA of mice exposed to a single exposure to butadiene in the present 20 ppm study and earlier 200 ppm study were approximately directly proportional across dose, but this was not observed in the case of rats. From the available evidence it is most likely that adduct G4 was formed from a specific isomer of the diol-epoxide metabolite, 3,4-epoxy-1,2-butanediol rather than the diepoxide, 1,2,3,4-diepoxybutane. Another adduct G3, possibly a diastereomer of N7-(2,3,4-trihydroxybutyl)-guanine or most likely the regioisomer N7-(1-hydroxymethyl-2,3-dihydroxypropyl)-guanine, was also detected in DNA of mouse tissues but was essentially absent in DNA from rat tissue. Qualitatively similar profiles of adducts were observed following exposures to butadiene in the present 20 ppm study and the previous 200 ppm study. Overall the DNA adduct levels measured in tissues of both rats and mice were very low. The differences in the profiles and quantity of adducts seen between mice and rats were considered insufficient to explain the large difference in carcinogenic potency of butadiene to mice compared with rats. 相似文献
3.
Blood and urine were obtained from male Sprague-Dawley rats and B6C3F1 mice exposed to either a single 6 h or multiple daily (5 x 6 h) nose-only doses of 1,3-[2,3- (14)C]-butadiene at atmospheric concentrations of 1, 5 or 20 ppM. Globin was isolated from erythrocytes of exposed animals and analyzed for total radioactivity and also for N-(1,2,3-trihydroxybut-4-yl)-valine adducts. The modified Edman degradation procedure coupled with GC-MS was used for the adduct analysis. Linear relationships were observed between the exposures to 1,3-[2,3-(14)C]-butadiene and the total radioactivity measured in globin and the level of trihydroxybutyl valine adducts in globin. A greater level of radioactivity (ca. 1.3-fold) was found in rat globin compared with mouse globin. When analyzed for specific amino acid adducts, higher levels of trihydroxybutyl valine adducts were found in mouse globin compared with rat globin. Average levels of trihydroxybutyl valine adduct measured in globin from rats and mice exposed for 5 x 6 h at 1, 5 and 20 ppM 1,3-[2,3-(14)C]-butadiene were, respectively, for rats: 80, 179, 512 pM/g globin and for mice: 143, 351, 1100 pM/g globin. The profiles of urinary metabolites for rats and mice exposed at the different concentrations of butadiene were obtained by reverse phase HPLC analysis on urine collected 24 h after the start of exposure and were compared with results of a previous similar study carried out for 6 h at 200 ppM butadiene. Whilst there were qualitative and quantitative differences between the profiles for rats and mice, the major metabolites detected in both cases were those representing products of epoxide hydrolase mediated hydrolysis and glutathione (GSH) conjugation of the metabolically formed 1,2-epoxy-3-butene. These were 4-(N-acetyl-l-cysteine-S-yl)-1,2-dihydroxy butane and (R)-2-(N-acetyl-l-cystein-S-yl)-1-hydroxybut-3-ene, 1-(N-acetyl-l-cystein-S-yl)-2-(S)-hydroxybut-3-ene, 1-(N-acetyl-l-cystein-S-yl)-2-(R)-hydroxybut-3-ene, (S)-2-(N-acetyl-l-cystein-S-yl)-1-hydroxybut-3-ene, respectively. The former pathway showed a greater predominance in the rat. The profiles of metabolites were similar at exposure concentration in the range 1-20 ppM. There were however some subtle differences compared with results of exposure to the higher 200 ppM concentrations. Overall the results provide the basis for cross species comparison of low exposures in the range of occupational exposures, with the wealth of data available from high exposure studies. 相似文献
4.
5.
6.
7.
V A Rozanov 《Ukrainski? biokhimicheski? zhurnal》1979,51(6):629-633
It is shown that more than 90% of the labelled substance D-[1-14C] calcium homopantotenate is rapidly removed from the organism with urea; 6-8% are products of its transformation, among them GABA is identified. An insignificant transformation of D-[1-14C] calcium homopantotenate up to 14CO2 is observed. After the preparation administration only unchanged D-[1-14C] calcium homopantotenate was found in the tissues, except of the liver where, as in urea, there is a nonidentified product with small Rf. [1-14C] GABA is rapidly transformed to 14CO2 and only its insignificant part is removed with urea, chiefly as products of transformation. 相似文献
8.
van Bekkum YM van den Broek PH Scheepers PT Noordhoek J Bos RP 《Chemico-biological interactions》1999,117(1):15-33
1-Nitropyrene (1-NP), a weak carcinogen associated with diesel exhaust particles, has previously been detected in workplace atmospheres with in-use diesel engines and in the general environment. In order to gain insight in its biological fate, a single dose of [14C]-1-NP (27.6 microCi, 750 mg/kg body weight, b.w.) was administered intragastrically to rats and the presence of metabolites in blood and tissue homogenates, and radioactivity associated with blood proteins and tissue DNA, were studied. Early peak levels of radioactivity observed in blood and tissue homogenates indicated a rapid absorption of [14C]-1-NP from the gastrointestinal tract. Metabolite patterns observed in plasma, liver and kidney homogenates strongly suggested an important role of the intestinal microflora in the enterohepatic recirculation, but not in nitroreduction of 1-NP prior to absorption from the gastrointestinal tract. This might explain the low levels of radioactivity associated with blood proteins, since 1-nitrosopyrene, a product of nitroreduction of 1-NP, is likely to be involved in protein binding. Levels of radioactivity associated with plasma proteins were approximately four times higher than the levels of radioactivity associated with hemoglobin (401.0 and 84.1 pmol/g protein per micromol 1-NP kg b.w., respectively, at 24 h). Maximal 25% of the associated radioactivity was released following mild alkaline hydrolysis of either hemoglobin or plasma proteins. 1-Aminopyrene was the only released compound after hydrolysis of hemoglobin. In addition to 1-aminopyrene, two more polar unidentified metabolites were detected following hydrolysis of plasma proteins. Association of radioactivity with DNA was highest in the liver at the first moments of observation (7.4 pmol 14C Eq./mg DNA per micromol 1-NP kg b.w.), but decreased rapidly to levels lower than observed for kidney DNA (max. 3.0 pmol 14C Eq./mg DNA per micromol 1-NP kg b.w. at 24 h). In lungs 8-50 times less radioactivity was associated with DNA than observed in the liver and kidneys. The results of this study show, that 1-NP undergoes an extensive and complex biotransformation in vivo, resulting in a variety of metabolites present in blood and tissue homogenates and a diversity of blood protein adducts. Concentrations of plasma metabolites, blood protein adducts and DNA adducts were rather low. In addition, previous studies also showed relatively low concentrations of metabolites present in urine. Therefore, sensitive and selective methods will be needed in order to evaluate the biological fate of 1-NP, associated with diesel exhaust particles, in humans. 相似文献
9.
Sherif Z. Abdel-Rahman Amr M. Nouraldeen Ahmed E. Ahmed 《Journal of biochemical and molecular toxicology》1994,9(4):191-198
Acrylonitrile (VCN) is used extensively in polymer industries, and is known to induce gastric cancer following oral administration, A paucity of information exists regarding the mechanism(s) by which acrylonitrile induces gastric neoplasia. The time course for uptake of radioactivity by gastric tissue and covalent binding of [2,3-14C] VCN or its metabolites to gastric DNA were determined following a single oral dose of 46.5 mg/kg. The rates of DNA synthesis and repair, as measured by unscheduled DNA synthesis in the gastric tissue of VCN-treated rats, were also studied. Maximum tissue uptake and covalent binding of radioactivity to gastric DNA were observed at 15 minutes following [2,3-14C] VCN administration. At 6 hours following VCN administration, significant inhibition (37% of control) in gastric replicative DNA synthesis was observed. A rebound followed by an increase (211% of control) in replicative DNA synthesis was observed at 24 hours. A three-fold elevation in unscheduled DNA synthesis was observed at 24 hours following treatment with VCN. These results indicate that VCN or its metabolites irreversibly interact with gastric DNA, causing DNA damage. The results also indicate that the delayed VCN-induced DNA repair, determined as unscheduled DNA synthesis, is inefficient for the removal of the resulting DNA lesions. 相似文献
10.
V V Snitinski? V G Ianovich S I Vovk 《Zhurnal evoliutsionno? biokhimii i fiziologii》1985,21(1):86-88
Studies have been made on the intensity of oxidation of [U-14C]-palmitate, [1-14C]- and [6-14C]-glucose by slices of the liver and skeletal muscles of new-born, 1-day, 5-day and adult Wistar rats and domestic pigs. It was found that the level of 14CO2 production from these substrates is higher in tissues of rats than in those of pigs. At early stages of ontogenesis, in tissues of both species intensive oxidation of glucose is observed together with oxidation of fatty acids. In the course of ontogenetic development, the intensity of glucose utilization significantly decreases, whereas the level of fatty acid catabolism remains relatively unaffected. 相似文献
11.
12.
Gas chromatographic determination of 3-butene-1,2-diol in urine samples after 1,3-butadiene exposure
Tiina Anttinen-Klemetti Raija Vaaranrinta Kimmo Peltonen 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》1999,730(2):186-264
1,3-Butadiene is an important industrial chemical and a common environmental contaminant. Because of its suspected carcinogenicity butadiene-related research has gained high activity. The obvious lack of knowledge so far has been that a biomonitoring method that can detect at least one of the metabolites of butadiene from body fluids or excretas does not exist. In this communication we describe a robust and simple analytical method which can be applied for biomonitoring purposes. We have developed a method that can detect 3-butene-1,2-diol in urine samples of rats inhalation-exposed to various concentrations of 1,3-butadiene. The method is based on liquid–liquid extraction and subsequent gas chromatographic analysis. The extraction efficiency of 3-butene-1,2-diol at a concentration of 2.2 μg/ml was 95% (SD=±3%, n=3) and was achieved by using sodium chloride saturation and isopropanol as an extracting solvent. The standard deviation of the gas chromatographic analysis was ±2% (n=12), the limit of detection was 0.08 μg/ml, the limit of quantitation was 0.11 μg/ml (SD=±4.8%, n=3) and the analysis was observed to be linear from 0.11 to 486 μg/ml (R=0.9987). Animals exposed to 1,3-butadiene showed a linear excretion of 3-butene-1,2-diol into urine as a function of butadiene exposure. During the exposure saturation of metabolism or accumulation of 1,3-butadiene or 3-butene-1,2-diol into the body was not observed in any exposure levels used. 相似文献
13.
14.
Zhang HX Jijakli H Courtois P Sener A Malaisse WJ 《Molecular and cellular biochemistry》2003,252(1-2):247-251
In pancreatic islets prepared from either normal or GK rats and incubated at either low (2.8 mM) or high (16.7 mM) D-glucose concentration, the labelling of both lipids and their glycerol moiety is higher in the presence of D-[1-14C]glucose than D-[6-14C]glucose. The rise in D-glucose concentration augments the labelling of lipids, the paired 14C/3H ratio found in islets exposed to both D-[1-14C]glucose or D-[6-14C]glucose and D-[3-3H]glucose being even slightly higher at 16.7 mM D-glucose than that found, under otherwise identical conditions, at 2.8 mM D-glucose. Such a paired ratio exceeds unity in islets exposed to D-[1-14C]glucose. The labelling of islet lipids by D-[6-14C]glucose is about 30 times lower than the generation of acidic metabolites from the same tracer. These findings indicate (i) that the labelling of islet lipids accounts for only a minor fraction of D-glucose catabolism in pancreatic islets, (ii) a greater escape to L-glycerol-3-phosphate of glycerone-3-phosphate generated from the C1-C2-C3 moiety of D-glucose than D-glyceraldehyde-3-phosphate produced from the C4-C5-C6 moiety of the hexose, (iii) that only a limited amount of [3-3H]glycerone 3-phosphate generated from D-[3-3H]glucose is detritiated at the triose phosphate isomerase level before being converted to L-glycerol-3-phosphate, and (iv) that a rise in D-glucose concentration results in an increased labelling of islet lipids, this phenomenon being somewhat more pronounced in the case of D-[1-14C]glucose or D-[6-14C]glucose rather than D-[3-3H]glucose. 相似文献
15.
16.
17.
18.
The conversion of [4-14C]estradiol to water-soluble products by lactoperoxidase (EC 1.11.1.7) in the presence of added or generated H2O2 was studied using albumin or tyrosine as acceptor. The enzyme was able to catalyze the oxidation and binding of estradiol to albumin even in the absence of 2,4-dichlorophenol at very low concentrations of hydrogen peroxide. Other systems in which H2O2 was replaced by oxygen and Mn2+, light-sensitized riboflavin or glutathione was also shown to be active in the conversion of estradiol to water-soluble products and the effect of inhibitors on these reactions was investigated. Possible mechanisms for the peroxidase-catalyzed formation of these estradio metabolites are discussed. 相似文献
19.
[1,2-3H]Cholesterol, 5 beta-[21-14C]cholestan-3 beta-ol (coprostanol), and 3 beta-hydroxy-5 beta-[21-14C]pregnan-20-one were injected into intact Bufo arenarum toads. Arenobufagin, the main bufadienolide present in the venom of the mentioned toad, was isolated and purified by means of chromatographic procedures. The first two compounds, having an intact cholesterol side chain, were incorporated, at comparable levels, into the bufadienolide while the labeled pregnane derivative yielded non-radioactive arenobufagin. The above results support the hypothesis that cholesterol and those steroids having an intact cholesterol-type side chain are able to penetrate to the site of bufadienolide biosynthesis and are converted into bufadienolides by a still-unknown mechanism. On the other hand, those steroid derivatives bearing a degraded side chain, e.g., 20-keto-pregnanes, are not converted into bufadienolides because they are not incorporated into the bufadienolide-producing cells. 相似文献
20.
M J Garson V Partali S Liaaen-Jensen I L Stoilov 《Comparative biochemistry and physiology. B, Comparative biochemistry》1988,91(2):293-300
1. We present quantitative evidence from incorporation of [1-14C] acetate that the enzymes to synthesise isoprenoids are present in the marine sponge Amphimedon sp. and that efficient carotenoid synthesis takes place. 2. The de novo synthesis of b,b-carotene and (3R,3'R)-zeaxanthin may occur in a chlorophyll a-producing microalgal symbiont with subsequent aromatisation to (3R)-isoagelaxanthin by the sponge itself. 3. Amphimedon sp. contains nuclear-modified sterols derived by modification of conventional dietary sterols. 相似文献