首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A thioredoxin reductase (TrxR) has been identified in the hyperthermophilic archaeon Sulfolobus solfataricus (Ss). This enzyme is a homodimeric flavoprotein that was previously identified as NADH oxidase in the same micro-organism ('Biotechnol. Appl. Biochem. 23 (1996) 47'). The primary structure of SsTrxR is made of 323 amino acid residues and contains two putative betaalphabeta regions for the binding of FAD, and a NADP(H) binding consensus sequence in the proximity of a CXXC motif. These findings indicate that SsTrxR is structurally related to the class II of the pyridine nucleotide-disulphide oxidoreductases family. Moreover, the enzyme exhibits a NADP(H) dependent thioredoxin reductase activity requiring the presence of FAD. Surprisingly, the reductase activity of SsTrxR is reduced in the presence of a specific inhibitor of mammalian TrxR. This finding demonstrates that the archaeal enzyme, although structurally related to eubacterial TrxR, is functionally closer to eukaryal enzymes. Experimental evidences indicate that a disulphide bridge is required for the reductase but also for the NADH oxidase activity of the enzyme. These results are further supported by the significantly reduced activities exerted by the C147A mutant. The integrity of the CXXC motif is also involved in the stability of the enzyme.  相似文献   

2.
Cytochrome caa3, a cytochrome c oxidase from Thermus thermophilus, is a two-subunit enzyme containing the four canonical metal centers of cytochrome c oxidases (cytochromes a and a3; copper centers CuA and CuB) and an additional cytochrome c. The smaller subunit contains heme C and was termed the C-protein. We have cloned the genes encoding the subunits of the oxidase and determined the nucleotide sequence of the C-protein gene. The gene and deduced primary amino acid sequences establish that both the gene and the protein are fusions with a typical subunit II sequence and a characteristic cytochrome c sequence; we now call this subunit IIc. The protein thus appears to represent a covalent joining of substrate (cytochrome c) to its enzyme (cytochrome c oxidase). In common with other subunits II, subunit IIc contains two hydrophobic segments of amino acids near the amino terminus that probably form transmembrane helices. Variability analysis of the Thermus and other subunit II sequences suggests that the two putative transmembrane helices in subunit II may be located on the surface of the hydrophobic portion of the intact cytochrome oxidase protein complex. Also in common with other subunits II is a relatively hydrophilic intermembrane domain containing a set of conserved amino acids (2 cysteines and 2 histidines) which have previously been proposed by others to serve as ligands to the CuA center. We compared the subunit IIc sequence with that of related proteins. N2O reductase of Pseudomonas stutzeri, a multi-copper protein that appears to contain a CuA site (Scott, R.A., Zumft, W.G., Coyle, C.L., and Dooley, D.M. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 4082-4086), contains a 59-residue sequence element that is homologous to the "CuA sequence motif" found in cytochrome oxidase subunits II, including all four putative copper ligands. By contrast, subunit II of the Escherichia coli quinol oxidase, cytochrome bo, also contains a region homologous to the CuA motif, but it lacks the proposed metal binding histidine and cysteine residues; this is consistent with the apparent absence of CuA from cytochrome bo.  相似文献   

3.
Amphibacillus xylanus Ep01, a facultative anaerobe we recently isolated, shows rapid aerobic growth even though it lacks a respiratory pathway. Thus, the oxidative consumption of NADH, produced during glycolysis and pyruvate oxidation, should be especially important for maintenance of intracellular redox balance in this bacterium. We purified a flavoprotein functional as NADH oxidase from aerobically growing A. xylanus Ep01. The A. xylanus enzyme is a homotetramer composed of a subunit (M(r) 56,000) containing 1 mol of flavin adenine dinucleotide. This enzyme catalyzes the reduction of oxygen to hydrogen peroxide with beta-NADH as the preferred electron donor and exhibits no activity with NADPH. The flavoprotein gene of A. xylanus Ep01 was cloned by using a specific antibody. The amino acid sequence of 509 residues, deduced from the nucleotide sequence, showed 51.2 and 72.5% identities to the amino acid sequences of alkyl hydroperoxide reductase from Salmonella typhimurium and NADH dehydrogenase from alkalophilic Bacillus sp. strain YN-1, respectively. Bacillus spp. have a respiratory chain and grow well under aerobic conditions. In contrast, Amphibacillus spp., having no respiratory chain, grow equally well under both aerobic and anaerobic conditions, which distinguishes these two genera. Salmonella spp., which are gram-negative bacteria, are taxonomically distant from gram-positive bacteria such as Bacillus spp. and Amphibacillus spp. The above findings, however, suggest that the flavoprotein functional as NADH oxidase, the alkyl hydroperoxide reductase, and the NADH dehydrogenase diverged recently, with only small changes leading to their functional differences.  相似文献   

4.
A full-length 515 base pairs cDNA for cytochrome c oxidase subunit V of D. discoideum was isolated from a lambda gt11 expression library. The encoded polypeptide, whose identity was confirmed by partial protein sequencing, is 119 amino acids long (Mr = 13,352) and does not contain a cleavable presequence. The protein, which is homologous to human subunit Vb and yeast subunit IV, exhibits the highest degree of sequence conservation found among nuclear-encoded subunits of cytochrome c oxidase from distantly related organisms. All the invariant residues are clustered in two regions of the C-terminus which include the putative amino acids involved in the coordination of the Zn ion tightly associated to eukaryotic oxidase.  相似文献   

5.
X M Xu  A Matsuno-Yagi  T Yagi 《Biochemistry》1991,30(26):6422-6428
The NADH dehydrogenase complex isolated from Paracoccus denitrificans is composed of approximately 10 unlike polypeptides and contains noncovalently bound FMN, non-heme iron, and acid-labile sulfide [Yagi, T. (1986) Arch. Biochem. Biophys. 250, 302-311]. The NADH-binding subunit (Mr = 50,000) of this enzyme complex was identified by direct photoaffinity labeling with [32P]NADH [Yagi, T., & Dinh, T.M. (1990) Biochemistry 29, 5515-5520]. Primers were synthesized on the basis of the N-terminal amino acid sequence of this polypeptide, and these primers were used to synthesize an oligonucleotide probe by the polymerase chain reaction. This probe was utilized to isolate the gene encoding the NADH-binding subunit from a genomic library of P. denitrificans. The nucleotide sequence of the gene and the deduced amino acid sequence of the entire NADH-binding subunit were determined. The NADH-binding subunit has 431 amino acid residues and a calculated molecular weight of 47,191. The encoded protein contains a putative NAD(H)-binding and an iron-sulfur cluster-binding consensus sequence. The deduced amino acid sequence of the Paracoccus NADH-binding subunit shows remarkable similarity to the alpha subunit of the NAD-linked hydrogenase of Alcaligenes eutrophus H16. When partial DNA sequencing of the regions surrounding the gene encoding the NADH-binding subunit was carried out, sequences homologous to the 24-, 49-, and 75-kDa polypeptides of bovine complex I were detected, suggesting that the structural genes of the Paracoccus NADH dehydrogenase complex constitute a gene cluster.  相似文献   

6.
Operons coding for the enzyme arsenite oxidase have been detected in the genomes from Archaea and Bacteria by Blast searches using the amino acid sequences of the respective enzyme characterized in two different beta-proteobacteria as templates. Sequence analyses show that in all these species, arsenite oxidase is transported over the cytoplasmic membrane via the tat system and most probably remains membrane attached by an N-terminal transmembrane helix of the Rieske subunit. The biochemical and biophysical data obtained for arsenite oxidase in the green filamentous bacterium Chloroflexus aurantiacus allow a structural model of the enzyme's membrane association to be proposed. Phylogenies for the two constituent subunits (i.e., the molybdopterin-containing and the Rieske subunit) of the heterodimeric enzyme and their respective homologs in DMSO-reductase, formate dehydrogenase, nitrate reductase, and the Rieske/cytb complexes were calculated from multiple sequence alignments. The obtained phylogenetic trees indicate an early origin of arsenite oxidase before the divergence of Archaea and Bacteria. Evolutionary implications of these phylogenies are discussed.  相似文献   

7.
The FAD-containing NADH oxidase from Streptococcus faecalis 10C1, which catalyzes the four-electron reduction of O2----2H2O, has been purified by an improved procedure for analyses of its structural and redox properties. The enzyme is apparently a dimer of two identical subunits, each containing 1 mol of FAD. Dithionite reduction of the enzyme proceeds in two distinct phases corresponding to approximately 0.5 and 1.1 eq/FAD, respectively. Thiol assays of the NADH oxidase, reduced anaerobically with 1 eq of NADH/FAD prior to denaturation, are consistent with the presence of a single redox-active cysteinyl residue/subunit. Analysis of the cysteinyl peptides of the oxidase, identified in tryptic digests of the enzyme labeled metabolically with [35S]cysteine, reveals a sequence which is closely related to the redox-active cysteinyl peptide sequence recently determined for the streptococcal flavoprotein NADH peroxidase. A second cysteinyl peptide sequence, when aligned with residues 3-17 of the peroxidase NH2-terminal sequence, reveals identity in 7 of 15 positions and satisfies several of the criteria described for ADP-binding structures. Additional probes of the structural and redox properties of the NADH oxidase, including visible circular dichroism spectroscopy and sensitivity to inactivation by hydrogen peroxide, provide further evidence for a fundamental structural connection between flavin-dependent NADH oxidase and peroxidase functions.  相似文献   

8.
X M Xu  A Matsuno-Yagi  T Yagi 《Biochemistry》1991,30(35):8678-8684
The NADH dehydrogenase complex isolated from Paracoccus denitrificans is composed of approximately 10 unlike polypeptides [Yagi, T. (1986) Arch. Biochem. Biophys. 250, 302-311]. Structural genes encoding the subunits of this enzyme complex constitute at least one gene cluster [Xu, X., Matsuno-Yagi, A., & Yagi, T. (1991) Biochemistry 30, 6422-6428]. The 25-kDa subunit (NQO2), which has been isolated from sodium dodecyl sulfate-polyacrylamide gels, is a polypeptide of this enzyme complex. The partial N-terminal amino acid sequence and amino acid composition of the NQO2 subunit have been determined. On the basis of the amino acid sequence, the NQO2 gene was found to be located 1.7 kilobase pairs upstream of the gene for NADH-binding subunit (NQO1). The complete nucleotide sequence of the NQO2 gene was determined. It is composed of 717 base pairs and codes for 239 amino acid residues with a calculated molecular weight of 26,122. The NQO2 subunit is homologous to the Mr 24,000 subunit of the mammalian mitochondrial NADH-ubiquinone oxidoreductase which bears an electron paramagnetic resonance-visible binuclear iron-sulfur cluster (probably cluster N1b). Comparison of the predicted amino acid sequence of the Paracoccus NQO2 subunit with those of its mammalian counterparts suggests putative binding sites for the iron-sulfur cluster. In addition, nucleotide sequencing shows the presence of two unidentified reading frames between the NQO1 and NQO2 genes. These are designated URF1 and URF2 and are composed of 261 and 642 base pairs, respectively. The possible function of the protein coded for the URF2 is discussed.  相似文献   

9.
Subunit VIIa of yeast cytochrome c oxidase is a small (59 amino acids) protein of the inner mitochondrial membrane that lacks a cleavable amino-terminal presequence. To identify regions within this polypeptide that are essential for its import, gene fusions were constructed using a leader peptide substitution vector (pLPS) developed in this laboratory (Glaser, S. M., Trueblood, C. E., Dircks, L. K., Poyton, R. O., and Cumsky, M. G. (1988) J. Cell. Biochem. 36, 275-287). In this vector, oligonucleotide sequences encoding all or part of subunit VIIa were fused in-frame with the coding region of mature cytochrome c oxidase subunit Va. The plasmid pLPS is ideal for assaying protein sequences for their ability to direct mitochondrial import in vivo since subunit Va's leader peptide is essential for import and because subunit V is required for cytochrome c oxidase activity and respiration. Strains containing these fusions but lacking both subunit V genes (COX5a and COX5b) were analyzed to determine whether the chimeric protein is directed to mitochondria. Our findings indicate that the amino-terminal 17 amino acids of subunit VIIa are sufficient to localize subunit Va to the mitochondrion and that a 6-amino acid-long region within the amino terminus (Gly8-Arg13) is essential. In addition, some import (approximately 10% of wild type) is observed with the highly charged carboxyl terminus of subunit VIIa, suggesting that the subunit may contain redundancy in its import information.  相似文献   

10.
Gram-positive thermophilic Bacillus species contain cytochrome caa3-type cytochrome c oxidase as their main terminal oxidase in the respiratory chain. We previously identified and purified an alternative oxidase, cytochrome bd-type quinol oxidase, from a mutant of Bacillus stearothermophilus defective in the caa3-type oxidase activity (J. Sakamoto et al., FEMS Microbiol. Lett. 143 (1996) 151-158). Compared with proteobacterial counterparts, B. stearothermophilus cytochrome bd showed lower molecular weights of the two subunits, shorter wavelength of alpha-band absorption maximum due to heme D, and lower quinol oxidase activity. Preincubation with menaquinone-2 enhanced the enzyme activity up to 40 times, suggesting that, besides the catalytic site, there is another quinone-binding site which largely affects the enzyme activity. In order to clarify the molecular basis of the differences of cytochromes bd between B. stearothermophilus and proteobacteria, the genes encoding for the B. stearothermophilus bd was cloned based on its partial peptide sequences. The gene for subunit I (cbdA) encodes 448 amino acid residues with a molecular weight of 50195 Da, which is 14 and 17% shorter than those of Escherichia coli and Azotobacter vinelandii, respectively, and CbdA lacks the C-terminal half of the long hydrophilic loop between the putative transmembrane segments V and VI (Q loop), which has been suggested to include the substrate quinone-binding site for the E. coli enzyme. The gene for subunit II (cbdB) encodes 342 residues with a molecular weight of 38992 Da. Homology search indicated that the B. stearothermophilus cbdAB has the highest sequence similarity to ythAB in B. subtilis genome rather than to cydAB, the first set of cytochrome bd genes identified in the genome. Sequence comparison of cytochromes bd and their homologs from various organisms demonstrates that the proteins can be classified into two subfamilies, a proteobacterial type including E. coli bd and a more widely distributed type including the B. stearothermophilus enzyme, suggesting that the latter type is evolutionarily older.  相似文献   

11.
The chemolithoautotroph NT-26 oxidizes arsenite to arsenate by using a periplasmic arsenite oxidase. Purification and preliminary characterization of the enzyme revealed that it (i) contains two heterologous subunits, AroA (98 kDa) and AroB (14 kDa); (ii) has a native molecular mass of 219 kDa, suggesting an alpha2beta2 configuration; and (iii) contains two molybdenum and 9 or 10 iron atoms per alpha2beta2 unit. The genes that encode the enzyme have been cloned and sequenced. Sequence analyses revealed similarities to the arsenite oxidase of Alcaligenes faecalis, the putative arsenite oxidase of the beta-proteobacterium ULPAs1, and putative proteins of Aeropyrum pernix, Sulfolobus tokodaii, and Chloroflexus aurantiacus. Interestingly, the AroA subunit was found to be similar to the molybdenum-containing subunits of enzymes in the dimethyl sulfoxide reductase family, whereas the AroB subunit was found to be similar to the Rieske iron-sulfur proteins of cytochrome bc1 and b6f complexes. The NT-26 arsenite oxidase is probably exported to the periplasm via the Tat secretory pathway, with the AroB leader sequence used for export. Confirmation that NT-26 obtains energy from the oxidation of arsenite was obtained, as an aroA mutant was unable to grow chemolithoautotrophically with arsenite. This mutant could grow heterotrophically in the presence of arsenite; however, the arsenite was not oxidized to arsenate.  相似文献   

12.
13.
The enzyme responsible for iodide salvage in the thyroid, iodotyrosine deiodinase, was solubilized from porcine thyroid microsomes by limited proteolysis with trypsin. The resulting protein retained deiodinase activity and was purified using anion exchange, dye, and hydrophobic chromatography successively. Peptide sequencing of the final isolate identified the gene responsible for the deiodinase. The amino acid sequence of the porcine enzyme is highly homologous to corresponding genes in a variety of mammals including humans, and the mouse gene was expressed in human embryonic kidney 293 cells to confirm its identity. The amino acid sequence of the deiodinase suggests the presence of three domains. The N-terminal domain provides a membrane anchor. The intermediate domain contains the highest sequence variability and lacks homology to structural motifs available in the common databases. The C-terminal domain is highly conserved and resembles bacterial enzymes of the NADH oxidase/flavin reductase superfamily. A three-dimensional model of the deiodinase based on the coordinates of the minor nitroreductase of Escherichia coli indicates that a Cys common to all of the mammal sequences is located adjacent to bound FMN. However, the deiodinase is not structurally related to other known flavoproteins containing redox-active cysteines or the iodothyronine deiodinases containing an active site selenocysteine.  相似文献   

14.
Purification and properties of NADH oxidase from Bacillus megaterium   总被引:3,自引:0,他引:3  
NADH oxidase, which catalyzes the oxidation of NADH, with the consumption of a stoichiometric amount of oxygen, to NAD+ and hydrogen peroxide was purified from Bacillus megaterium by 5'-AMP Sepharose affinity chromatography to homogeneity. The enzyme is a dimeric protein containing 1 mol of FAD per mol of subunit, Mr = 52,000. The absorption maxima of the native enzyme (oxidized form) were found at 270, 383, and 450 with a shoulder at 475 nm in 50 mM KPi buffer, pH 7.0. The visible absorption bands at 383 and 450 nm disappeared on the addition of NADH under anaerobic conditions and reappeared upon the introduction of air. Thus, the non-covalently bound FAD functioned as a prosthetic group for the enzyme. We tentatively named this new enzyme NADH oxidase (NADH:oxygen oxidoreductase, hydrogen peroxide forming). This enzyme stereospecifically oxidizes the pro-S hydrogen at C-4 of the pyridine ring of NADH.  相似文献   

15.
Acryloyl-CoA reductase from Clostridium propionicum catalyses the irreversible NADH-dependent formation of propionyl-CoA from acryloyl-CoA. Purification yielded a heterohexadecameric yellow-greenish enzyme complex [(alpha2betagamma)4; molecular mass 600 +/- 50 kDa] composed of a propionyl-CoA dehydrogenase (alpha2, 2 x 40 kDa) and an electron-transferring flavoprotein (ETF; beta, 38 kDa; gamma, 29 kDa). A flavin content (90% FAD and 10% FMN) of 2.4 mol per alpha2betagamma subcomplex (149 kDa) was determined. A substrate alternative to acryloyl-CoA (Km = 2 +/- 1 microm; kcat = 4.5 s-1 at 100 microm NADH) is 3-buten-2-one (methyl vinyl ketone; Km = 1800 microm; kcat = 29 s-1 at 300 microm NADH). The enzyme complex exhibits acyl-CoA dehydrogenase activity with propionyl-CoA (Km = 50 microm; kcat = 2.0 s-1) or butyryl-CoA (Km = 100 microm; kcat = 3.5 s-1) as electron donor and 200 microm ferricenium hexafluorophosphate as acceptor. The enzyme also catalysed the oxidation of NADH by iodonitrosotetrazolium chloride (diaphorase activity) or by air, which led to the formation of H2O2 (NADH oxidase activity). The N-terminus of the dimeric propionyl-CoA dehydrogenase subunit is similar to those of butyryl-CoA dehydrogenases from several clostridia and related anaerobes (up to 55% sequence identity). The N-termini of the beta and gamma subunits share 40% and 35% sequence identities with those of the A and B subunits of the ETF from Megasphaera elsdenii, respectively, and up to 60% with those of putative ETFs from other anaerobes. Acryloyl-CoA reductase from C. propionicum has been characterized as a soluble enzyme, with kinetic properties perfectly adapted to the requirements of the organism. The enzyme appears not to be involved in anaerobic respiration with NADH or reduced ferredoxin as electron donors. There is no relationship to the trans-2-enoyl-CoA reductases from various organisms or the recently described acryloyl-CoA reductase activity of propionyl-CoA synthase from Chloroflexus aurantiacus.  相似文献   

16.
K Fukui  F Watanabe  T Shibata  Y Miyake 《Biochemistry》1987,26(12):3612-3618
Complementary DNAs encoding D-amino acid oxidase (EC 1.4.3.3, DAO), one of the principal and characteristic enzymes of the peroxisomes of porcine kidney, have been isolated from the porcine kidney cDNA library by hybridization with synthetic oligonucleotide probes corresponding to the partial amino acid sequences. Analysis of the nucleotide sequences of two clones revealed a complete 3211-nucleotide sequence with a 5'-terminal untranslated region of 198 nucleotides, 1041 nucleotides of an open reading frame that encoded 347 amino acids, and a 3'-terminal untranslated region of 1972 nucleotides. The deduced amino acid sequence was completely identical with the reported sequence of the mature enzyme [Ronchi, S., Minchiotti, L., Galliano, M., Curti, B., Swenson, R. P., Williams, C. H. J., & Massey, V. (1982) J. Biol. Chem. 257, 8824-8834]. These results indicate that the primary translation product does not contain a signal peptide at its amino-terminal region for its translocation into peroxisomes. RNA blot hybridization analysis suggests that porcine kidney D-amino acid oxidase is encoded by three mRNAs that differ in size: 3.3, 2.7, and 1.5 kilobases. Comparison of the sequences of the two cDNA clones revealed that multiple polyadenylation signal sequences (ATTAAA and AACAAA) are present in the 3'-untranslated region, making the different mRNA species. The efficiency of 3' processing of the RNA was quite different between the two signal sequences ATTAAA and AACAAA. Southern blot analysis showed the presence of a unique gene for D-amino acid oxidase in the porcine genome.  相似文献   

17.
The gene (hmgA) for 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (EC 1.1.1.34) from the thermophilic archaeon Sulfolobus solfataricus P2 was cloned and sequenced. S. solfataricus HMG-CoA reductase exhibited a high degree of sequence identity (47%) to the HMG-CoA reductase of the halophilic archaeon Haloferax volcanii. Phylogenetic analyses of HMG-CoA reductase protein sequences suggested that the two archaeal genes are distant homologs of eukaryotic genes. The only known bacterial HMG-CoA reductase, a strictly biodegradative enzyme from Pseudomonas mevalonii, is highly diverged from archaeal and eukaryotic HMG-CoA reductases. The S. solfataricus hmgA gene encodes a true biosynthetic HMG-CoA reductase. Expression of hmgA in Escherichia coli generated a protein that both converted HMG-CoA to mevalonate and cross-reacted with antibodies raised against rat liver HMG-CoA reductase. S. solfataricus HMG-CoA reductase was purified in 40% yield to a specific activity of 17.5 microU per mg at 50 degrees C by a sequence of steps that included heat treatment, ion-exchange chromatography, hydrophobic interaction chromatography, and affinity chromatography. The final product was homogeneous, as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The substrate was (S)- not (R)-HMG-CoA; the reductant was NADPH not NADH. The Km values for HMG-CoA (17 microM) and NADPH (23 microM) were similar in magnitude to those of other biosynthetic HMG-CoA reductases. Unlike other HMG-CoA reductases, the enzyme was stable at 90 degrees C and was optimally active at pH 5.5 and 85 degrees C.  相似文献   

18.
The amino acid sequence of the molybdenum-containing domain of chicken hepatic sulfite oxidase has been determined by Edman degradation of the purified protein. Combining these data with those previously published for the heme-containing domain (Guiard, B., and Lederer, F. (1979) Eur. J. Biochem. 100, 441-453) indicates that each subunit of the homodimer comprises a single polypeptide chain containing 460 amino acid residues (Mr = 50,545). Comparison of the sequence with the cDNA-deduced sequence of assimilatory nitrate reductase from Arabidopsis thaliana shows a substantial degree of sequence conservation in the regions of the proteins that have been identified as comprising the Mo-pterin- and cytochrome b557-binding domains. These results suggest that the sequences forming the molybdenum-binding domains of the molybdenum hydroxylases may have evolved from a common ancestral gene.  相似文献   

19.
The complete amino acid sequence of the nuclearly coded cytochrome c oxidase subunit VI was determined for a genetically defined haploid strain of Saccharomyces cerevisiae. The subunit contains 108 amino acids, has Mr = 12,627, is acidic (net charge of -9.7 at pH 7) and is quite polar (polarity index, 50.9%). Distribution of charges within the polypeptide chain is highly non-random. The NH2- and COOH-terminal regions are predominantly acidic whereas an apolar and a basic region are found in the interior, Subunit VI shows between 28 and 40% sequence homology (depending on the method of alignment) with subunit V of bovine cytochrome c oxidase; since the yeast subunit VI lacks methionine and contains only a single histidine residue very close to the NH2 terminus, it is unlikely that either of the two subunits carries heme alpha in the native enzyme.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号