首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
We studied the structures and stabilities of G-quadruplexes formed in Myc1234, the region containing the four consecutive 5' runs of guanines of c-MYC promoter NHE III(1,) which have recently been shown to form in a supercoiled plasmid system in aqueous solution. We determined the NMR solution structure of the 1:2:1 parallel-stranded loop isomer, one of the two major loop isomers formed in Myc1234 in K(+) solution. This major loop isomer, although sharing the same folding structure, appears to be markedly less stable than the major loop isomer formed in the single-stranded c-MYC NHE III(1) oligonucleotide, the Myc2345 G-quadruplex. Our NMR structures indicated that the different thermostabilities of the two 1:2:1 parallel c-MYC G-quadruplexes are likely caused by the different base conformations of the single nucleotide loops. The observation of the formation of the Myc1234 G-quadruplex in the supercoiled plasmid thus points to the potential role of supercoiling in the G-quadruplex formation in promoter sequences. We also performed a systematic thermodynamic analysis of modified c-MYC NHE III(1) sequences, which provided quantitative measure of the contributions of various loop sequences to the thermostabilities of parallel-stranded G-quadruplexes. This information is important for understanding the equilibrium of promoter G-quadruplex loop isomers and for their drug targeting.  相似文献   

5.
6.
7.
G-Quadruplex and i-Motif-forming sequences in the promoter regions of several oncogenes show promise as targets for the regulation of oncogenes. In this study, molecular models were created for the c-MYC NHE-III1 (nuclease hypersensitivity element III1) from two 39-base complementary sequences. The NHE modeled here consists of single folded conformers of the polypurine intramolecular G-Quadruplex and the polypyrimidine intramolecular i-Motif structures, flanked by short duplex DNA sequences. The G-Quadruplex was based on published NMR structural data for the c-MYC 1:2:1 loop isomer. The i-Motif structure is theoretical (with five cytosine–cytosine pairs), where the central intercalated cytosine core interactions are based on NMR structural data obtained for a tetramolecular [d(A2C4)4] model i-Motif. The loop structures are in silico predictions of the c-MYC i-motif loops. The porphyrin meso-tetra(N-methyl-4-pyridyl)porphine (TMPyP4), as well as the ortho and meta analogs TMPyP2 and TMPyP3, were docked to six different locations in the complete c-MYC NHE. Comparisons are made for drug binding to the NHE and the isolated G-Quadruplex and i-Motif structures. NHE models both with and without bound cationic porphyrin were simulated for 100 ps using molecular dynamics techniques, and the non-bonded interaction energies between the DNA and porphyrins calculated for all of the docking interactions. Figure Molecular models of the average structure of the final 20 ps of the molecular dynamics simulation of the c-MYC NHE-III1 (nuclease hypersensitivity element III1) “silencer” element. The G-Quadruplex structure is at the top-center, and the i-Motif is at the bottom-center of each picture. a “Rotation #1” of the G-Quadruplex, with the T15 loop at the top and rear and the G19/A20 loop at the top and front of the picture. b “Rotation #2” of the G-Quadruplex, with the T15 loop at the top and front of the image, and the G19/A20 loop at the front and adjacent to the G-Quadruplex/i-Motif interface  相似文献   

8.
9.
10.
11.
Defining the molecular basis of the DNA sequence selectivity of polyamine binding is central to understanding polyamine-dependent gene expression. We have studied, by selective NMR experiments, the variation of spermine mobility and conformation in the presence of G-quadruplexes formed by sequences of the purine-rich strand of the c-Myc promoter, nuclease hypersensitivity element III1 (NHE III1). All the NHE quadruplexes restrict spermine mobility and induce a spermine conformational change but the most effective immobilisation occurs when all five G-tracts of the NHE III1 are present. This suggests structure within the nucleotides flanking the G-quadruplex has a role in immobilising spermine.  相似文献   

12.
In the HL-60 sublines that were isolated after a long-term continuous culture, abnormally stained or abnormally banded regions on chromosomes replaced extrachromosomal double minutes. The c-MYC gene is amplified in these structures. We followed the c-MYC gene loci during a consecutive passage by using FISH, and have found a large extrachromosomal element (LEE) that preexisted at the earliest passage in a very small fraction of cells. No chromosomal integration of c-MYC sequences was observed in up to 225 passages. The LEEs persistently evolved during culture and were not excluded from the nucleus. In the LEE-positive cells, the spontaneous differentiation was blocked and the granulocytic differentiation that was induced by treatment with dimethyl sulfoxide was reversed by withdrawal of the drug. The c-MYC gene integration into LEEs is unlikely to lead to these phenotypes. The reversibility might be related to the reversible c-MYC down-regulation during the early phase of the drug treatment of HL-60 cells at early cell passages.  相似文献   

13.
14.
15.
16.
The sodium/proton exchanger isoform 1 (NHE1) is an ubiquitous plasma membrane protein that regulates intracellular pH by removing excess intracellular acid. NHE1 is important in heart disease and cancer, making it an attractive therapeutic target. Although much is known about the function of NHE1, current structural knowledge of NHE1 is limited to two conflicting topology models: a low-resolution molecular envelope from electron microscopy, and comparison with a crystal structure of a bacterial homologue, NhaA. Our laboratory has used high-resolution nuclear magnetic resonance (NMR) spectroscopy to investigate the structures of individual transmembrane helices of NHE1 - a divide and conquer approach to the study of this membrane protein. In this review, we discuss the structural and functional insights obtained from this approach in combination with functional data obtained from mutagenesis experiments on the protein. We also compare the known structure of NHE1 transmembrane segments with the structural and functional insights obtained from a bacterial sodium/proton exchanger homologue, NhaA. The structures of regions of the NHE1 protein that have been determined have both similarities and specific differences to the crystal structure of the NhaA protein. These have allowed insights into both the topology and the function of the NHE1 protein.  相似文献   

17.
18.
19.
Intrinsic disorder is important for protein regulation, yet its role in regulation of ion transport proteins is essentially uninvestigated. The ubiquitous plasma membrane carrier protein Na(+)/H(+) Exchanger isoform 1 (NHE1) plays pivotal roles in cellular pH and volume homeostasis, and its dysfunction is implicated in several clinically important diseases. This study shows, for the first time for any carrier protein, that the distal part of the C-terminal intracellular tail (the cdt, residues V686-Q815) from human (h) NHE1 is intrinsically disordered. Further, we experimentally demonstrated the presence of a similar region of intrinsic disorder (ID) in NHE1 from the teleost fish Pleuronectes americanus (paNHE1), and bioinformatic analysis suggested ID to be conserved in the NHE1 family. The sequential variation in structure propensity as determined by NMR, but not the amplitude, was largely conserved between the h- and paNHE1cdt. This suggests that both proteins contain molecular recognition features (MoRFs), i.e., local, transiently formed structures within an ID region. The functional relevance of the most conserved MoRF was investigated by introducing a point mutation that significantly disrupted the putative binding feature. When this mutant NHE1 was expressed in full length NHE1 in AP1 cells, it exhibited impaired trafficking to the plasma membrane. This study demonstrated that the distal regulatory domain of NHE1 is intrinsically disordered yet contains conserved regions of transient structure. We suggest that normal NHE1 function depends on a protein recognition element within the ID region that may be linked to NHE1 trafficking via an acidic ER export motif.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号