首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We report the isolation of insertional mutations to the pstC and pstA genes of the phosphate-specific transport (pst) operon that results in loss of biofilm formation by Pseudomonas aureofaciens PA147-2. Consistent with the known roles of the Pst system in Escherichia coli and Pseudomonas aeruginosa, both P. aureofaciens pst mutants were demonstrated to have defects in inorganic phosphate (P(i)) transport and repression of Pho regulon expression. Subsequently, biofilm formation by the wild type was shown to require a threshold concentration of extracellular P(i). The two-component regulatory pair PhoR/PhoB is responsible for upregulation of Pho regulon expression in response to P(i)-limiting environments. By generating phoR mutants that were unable to express the Pho regulon, we were able to restore biofilm formation by P. aureofaciens in P(i)-limiting conditions. This result suggests that gene(s) within the Pho regulon act to regulate biofilm formation negatively in low-P(i) environments, and that phoR mutations uncouple PA147-2 from such regulatory constraints. Furthermore, the inability of pst mutants to repress Pho regulon expression accounts for their inability to form biofilms in non-limiting P(i) environments. Preliminary evidence suggests that the Pst system is also required for antifungal activity by PA147-2. During phenotypic analysis of pst mutants, we also uncovered novelties in relation to P(i) assimilation and Pho regulon control in P. aureofaciens.  相似文献   

3.
Environmental phosphate is an important signal for microorganism gene regulation, and it has recently been shown to trigger some key bacterial virulence mechanisms. In many bacteria, the Pho regulon is the major circuit involved in adaptation to phosphate limitation. The Pho regulon is controlled jointly by the two-component regulatory system PhoR/PhoB and by the phosphate-specific transport (Pst) system, which both belong to the Pho regulon. We showed that a pst mutation results in virulence attenuation in extraintestinal pathogenic Escherichia coli (ExPEC) strains. Our results indicate that the bacterial cell surface of the pst mutants is altered. In this study, we show that pst mutants of ExPEC strains display an increased sensitivity to different cationic antimicrobial peptides and vancomycin. Remarkably, the hexa-acylated 1-pyrophosphate form of lipid A is significantly less abundant in pst mutants. Among differentially expressed genes in the pst mutant, lpxT coding for an enzyme that transfers a phosphoryl group to lipid A, forming the 1-diphosphate species, was found to be downregulated. Our results strongly suggest that the Pho regulon is involved in lipid A modifications, which could contribute to bacterial surface perturbations. Since the Pho regulon and the Pst system are conserved in many bacteria, such a lipid A modification mechanism could be widely distributed among gram-negative bacterial species.  相似文献   

4.
5.
6.
From cell membrane to nucleotides: the phosphate regulon in Escherichia coli   总被引:16,自引:0,他引:16  
Most of the essential cellular components, like nucleic acids, lipids and sugars, are phosphorylated. The phosphate equilibrium in Escherichia coli is regulated by the phosphate (Pi) input from the surrounding medium. Some 90 proteins are synthesized at an increased rate during Pi starvation and the global control of the cellular metabolism requires cross-talk with other regulatory mechanisms. Since the Pi concentration is normally low in E. coli's natural habitat, these cells have devised a mechanism for synthesis of about 15 proteins to accomplish two specific functions: transport of Pi and its intracellular regulation. The synthesis of these proteins is controlled by two genes (the phoB-phoR operon), involving both negative and positive functions. PhoR protein is a histidine protein kinase, induced in Pi starvation and is a transmembrane protein. It phosphorylates the regulator protein PhoB which is also Pi starvation-induced. The PhoB phosphorylated form binds specifically to a DNA sequence of 18 nucleotides (the pho Box), which is part of the promoters of the Pho genes. The genes controlled by phoB constitute the Pho regulon. The repression of phoA (the gene encoding alkaline phosphatase) by high Pi concentrations in the medium requires the presence of an intact Pst operon (pstS, pstC, pstA, pstB and phoU) and phoR. The products of pstA and pstC are membrane bound, whereas the product of pstS is periplasmic and PstB and PhoU proteins are cytoplasmic. The function of the PhoU protein may be regulated by cofactor nucleotides and may be involved in signaling the activation of the regulon via PhoR.  相似文献   

7.
phoB is a positive regulatory gene for phoA, which codes for alkaline phosphatase, as well as for other genes belonging to the phosphate (pho) regulon whose expression is inducible by phosphate limitation in Escherichia coli. A hybrid plasmid that contains a phoB-lacZ fused gene was constructed in vitro. This plasmid enabled us to study phoB gene expression by measuring the beta-galactosidase level in the cells. The plasmid was introduced into various regulatory mutants related to the phosphate regulon, and phoB gene expression in these strains was studied under limited and excess phosphate conditions. It was found that the regulation of phoB expression was very similar to that of phoA expression. Expression of both genes was induced by phosphate starvation. Both genes were constitutively expressed in phoR, phoS, phoT and phoU mutants and were not expressed in a phoR-phoM double mutant. The implications of these findings for the regulatory mechanism of the pho regulon are discussed.  相似文献   

8.
A proteomic analysis of a wild-type and of a phoB mutant showed that Vibrio cholerae expresses genes of two major regulons in response to phosphate starvation. The Pho regulon, expressed by the wild-type, allowed the cells to adapt to the new environment. Induction of the general stress regulon was mainly observed in the phoB mutant as a strategy to resist stress and survive. Some functions of the adaptative and survival responses play roles in the pathogenicity of the bacteria. Among the members of the Pho regulon, we found a porin described as an important factor for the intestinal colonisation. Other functions not obviously related to phosphate metabolism, expressed preferentially by the wild-type cells, have also been implicated in virulence. These findings might explain the lack of virulence of the phoB mutant. The Pho regulon picture of V. cholerae, however, will not be complete until minor members and membrane proteins are identified. Among the phosphate-starvation induced genes we have found 13 hypothetical ones and for some of them functions have been assigned. The majority of the genes identified here have not been described before, thus they could be used to expand the proteomic reference map of V. cholerae El Tor.  相似文献   

9.
10.
11.
12.
13.
Two pathways exist for cleavage of the carbon-phosphorus (C-P) bond of phosphonates, the C-P lyase and the phosphonatase pathways. It was previously demonstrated that Escherichia coli carries genes (named phn) only for the C-P lyase pathway and that Enterobacter aerogenes carries genes for both pathways (K.-S. Lee, W. W. Metcalf, and B. L. Wanner, J. Bacteriol. 174:2501-2510, 1992). In contrast, here it is shown that Salmonella typhimurium LT2 carries genes only for the phosphonatase pathway. Genes for the S. typhimurium phosphonatase pathway were cloned by complementation of E. coli delta phn mutants. Genes for these pathways were proven not to be homologous and to lie in different chromosomal regions. The S. typhimurium phn locus lies near 10 min; the E. coli phn locus lies near 93 min. The S. typhimurium phn gene cluster is about 7.2 kb in length and, on the basis of gene fusion analysis, appears to consist of two (or more) genes or operons that are divergently transcribed. Like that of the E. coli phn locus, the expression of the S. typhimurium phn locus is activated under conditions of Pi limitation and is subject to Pho regulon control. This was shown both by complementation of the appropriate E. coli mutants and by the construction of S. typhimurium mutants with lesions in the phoB and pst loci, which are required for activation and inhibition of Pho regulon gene expression, respectively. Complementation studies indicate that the S. typhimurium phn locus probably includes genes both for phosphonate transport and for catalysis of C-P bond cleavage.  相似文献   

14.
To understand a physiological role of an abundant 34-kDa periplasmic protein in the denitrifying phototroph Rhodobacter sphaeroides f. sp. denitrificans grown in a medium containing malate as the carbon source, the gene for the protein was isolated. The deduced amino acid sequence of the protein had a sequence similarity of 66.2% to that of PstS from Sinorhizobium meliloti. The downstream sequence of the Rhodobacter pstS contained five genes similar to pstCAB and phoUB, and its upstream sequence contained a putative regulatory sequence that is analogous to the Pho box involved in phosphate-limitation-induced gene expression in Escherichia coli. Both the amount of the PstS and the pstS promoter-driven expression of lacZ activity increased about two-fold in response to phosphate limitation. This is the first isolation of pst genes encoding proteins of an ABC phosphate transporter system from phototrophic bacteria.  相似文献   

15.
16.
17.
18.
19.
Pho regulon is a highly evolved and conserved mechanism across the microbes to fulfil their phosphate need. In this study, 52 proteobacteria genomes were analyzed for the presence of phosphorus acquisition genes, their pattern of arrangement and copy numbers. The diverse genetic architecture of the Pho regulon genes indicates the evolutionary challenge of nutrient limitation, particularly phosphorus, faced by bacteria in their environment. The incongruence between the Pho regulon proteins phylogeny and species phylogeny along with the presence of additional copies of pstS and pstB genes, having cross similarity with other genera, suggest the possibility of horizontal gene transfer event. The substitution rate analysis and multiple sequence alignment of the Pho regulon proteins were analyzed to gain additional insight into the evolution of the Pho regulon system. This comprehensive study confirms that genes perform the regulatory function (phoBR) were vertically inherited, whereas interestingly, genes whose product involved in direct interaction with the environment (pstS) acquired by horizontal gene transfer. The substantial amino acid substitutions in PstS most likely contribute to the successful adaptation of bacteria in different ecological condition dealing with different phosphorus availability. The findings decipher the intelligence of the bacteria which enable them to carry out the targeted alteration of genes to cope up with the environmental condition.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号