共查询到20条相似文献,搜索用时 15 毫秒
1.
Comparison of Two Human Papovaviruses with Simian Virus 40 by Structural Protein and Antigenic Analysis 总被引:7,自引:13,他引:7
下载免费PDF全文

The proteins of simian virus 40 (SV40) and two human papovaviruses, the hemagglutinating BK virus and the non-hemagglutinating DAR virus, were analyzed and compared by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The virions of SV40 and DAR contain seven proteins. By molecular weight analysis the constituent proteins of SV40 and DAR are identical. Approximately 84% of the viral protein has a molceular weight of 45,000. The major protein of BK virus is 3,000 to 5,000 daltons lighter than the major proteins of SV40 and DAR viruses. The five most rapidly migrating proteins of BK virus are indistinguishable by molecular weight analysis from the corresponding proteins of SV40 and DAR viruses. Radial immunodiffusion and immunoelectrophoresis of whole virus gave lines of identity between SV40 and DAR when reacted with SV40 antibody. SV40 antiserum tested against BK virus and BK antiserum tested against SV40 virus showed no reactivity by complement fixation, immunodiffusion, or immunoelectrophoresis. 相似文献
2.
Small-fragment restriction endonuclease analysis (SF-REA) was established as a typing tool for Staphylococcus epidermidis. A total of 60 isolates comprising 48 epidemiologically nonrelated strains and 12 putatively linked isolates from 7 patients in 2 wards were analyzed. Nonrelated isolates were characterized by unique fingerprints when DNA was cleaved with EcoRI or ClaI, electrophoretically separated in a polyacrylamide gel, and silver stained. Three blood culture isolates from one patient in an intensive care unit, 4 isolates obtained from a child over a span of 2 weeks, and 5 isolates from 5 newborns in the same ward were grouped into 3 DNA pattern types, indicating identity of sequential isolates from 2 patients and nosocomial transmission of one Staphylococcus epidermidis strain between 5 babies. Results from pulsed-field gel electrophoresis of SmaI and SacII DNA digests and conventional marker systems such as antibiogram and plasmid profile were in accordance with these interpretations, whereas slight variation was observed in the biotypes of several strains. From the results of this study, we conclude that SF-REA is a precise and efficient method for the genotypic characterization of Staphylococcus epidermidis strains that can be used as a rapid and reliable typing tool. 相似文献
3.
Complementation Between BK Human Papovavirus and a Simian Virus 40 tsA Mutant 总被引:6,自引:7,他引:6
下载免费PDF全文

Complementation tests between BK human papovavirus and SV40 temperature-sensitive mutants tsA58 and tsB11 were performed. Under the reported experimental conditions, BKV complemented the "early" mutant tsA58 but failed to complement the "late" mutant tsB11. 相似文献
4.
Human Papovavirus, BK Strain: Biological Studies Including Antigenic Relationship to Simian Virus 40 总被引:15,自引:26,他引:15
下载免费PDF全文

Some of the properties of a new human papovavirus, BK, have been examined. Host range studies of BK virus (BKV) showed human cells to be more sensitive to infection than monkey cells; human fetal brain cells appear to be highly sensitive to BKV, with the production of extensive cytopathology characterized by cytoplasmic vacuolization. The hemagglutinin of BKV is associated with the virion and is resistant to ether or heating at 56 C for 30 min. Fluorescent antibody as well as neutralization tests indicated antigenic similarities between simian virus 40 (SV40) and BKV. Cells undergoing lytic infection with BKV synthesized intranuclear T antigen(s) which reacted with SV40 T antibody demonstrable by immunofluorescence. However, BKV did not appear to induce SV40 transplantation antigens in transplantation-resistance tests. Evidence was obtained that BKV was present in humans prior to the widespread use of polio vaccines, thus ruling out the possibility that BKV is an SV40-related monkey virus, introduced into the human population by accidental contamination of poliovirus vaccines. 相似文献
5.
Susceptibility of Human Cell Strains to Transformation by Simian Virus 40 and Simian Virus 40 Deoxyribonucleic Acid 总被引:3,自引:4,他引:3
下载免费PDF全文

Stuart A. Aaronson 《Journal of virology》1970,6(4):470-475
Marked differences were found in the susceptibility of human fibroblasts to transformation by simian virus 40 (SV40). Highly susceptible cell strains were derived from patients with diseases associated with chromosomal abnormalities and a high incidence of tumors. In the present study, SV40 transformation-susceptible cell strains were not found to have a generalized increase in viral sensitivity. The differences in transformation frequency among cell strains with whole virus are eliminated by the use of isolated SV40 deoxyribonucleic acid, suggesting that the relative resistance of most cell strains to transformation by whole virus is due to a block at an early step in infection. 相似文献
6.
Superinfection of Simian Virus 40-Transformed Permissive Cells with Simian Virus 40 总被引:1,自引:3,他引:1
下载免费PDF全文

Evidence that the resistance of simian virus (SV40)-transformed permissive cells to superinfection with SV40 is due to lack of virus uptake is presented. When virus uptake is enhanced, the events of infection proceed as in normal permissive cells, resulting in production of infectious virus. 相似文献
7.
We have studied the binding of the tumor antigen (T-antigen) of simian virus 40 to simian virus 40 chromatin (minichromosomes). The minichromosomes isolated from infected cells by a modification of standard techniques were relatively free of contaminating RNA and cellular DNA and had a ratio (by weight) of protein to DNA of approximately 1; their DNA was 50 to 60% digestible to an acid-soluble form by staphylococcal nuclease. Cleavage of this chromatin with restriction endonucleases indicated that the nuclease-resistant regions were randomly distributed in the population of minichromosomes, but were not randomly distributed within minichromosomes. Only 20 to 35% of these minichromosomes adsorbed nonspecifically to nitrocellulose filters, permitting binding studies between simian virus 40 T-antigen and chromatin to be performed. Approximately two to three times as much T-antigen was required to bind chromatin as to bind an equivalent amount of free DNA. When T-antigen was present in excess, both chromatin and free DNA were quantitatively retained on the filters. On the other hand, when DNA or chromatin was present in excess, only one-third as much chromatin as DNA was retained. We suggest that T-antigen-chromatin complexes may be formed by the cooperative binding of T-antigen to chromatin, whereas T-antigen-DNA complexes may be formed by simple bimolecular interactions. 相似文献
8.
Association of Simian Virus 40 T Antigen with Simian Virus 40 Nucleoprotein Complexes 总被引:4,自引:9,他引:4
下载免费PDF全文

Viral nucleoprotein complexes were extracted from the nuclei of simian virus 40 (SV40)-infected TC7 cells by low-salt treatment in the absence of detergent, followed by sedimentation on neutral sucrose gradients. Two forms of SV40 nucleoprotein complexes, those containing SV40 replicative intermediate DNA and those containing SV40 (I) DNA, were separated from one another and were found to have sedimentation values of 125 and 93S, respectively. [(35)S]methioninelabeled proteins in the nucleoprotein complexes were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In addition to VP1, VP3, and histones, a protein with a molecular weight of 100,000 (100K) is present in the nucleoprotein complexes containing SV40 (I) DNA. The 100K protein was confirmed as SV40 100K T antigen, both by immunoprecipitation with SV40 anti-T serum and by tryptic peptide mapping. The 100K T antigen is predominantly associated with the SV40 (I) DNA-containing complexes. The 17K T antigen, however, is not associated with the SV40 (I) DNA-containing nucleoprotein complexes. The functional significance of the SV40 100K T antigen in the SV40 (I) DNA-containing nucleoprotein complexes was examined by immunoprecipitation of complexes from tsA58-infected TC7 cells. The 100K T antigen is present in nucleoprotein complexes extracted from cells grown at the permissive temperature but is clearly absent from complexes extracted from cells grown at the permissive temperature and shifted up to the nonpermissive temperature for 1 h before extraction, suggesting that the association of the 100K T antigen with the SV40 nucleoprotein complexes is involved in the initiation of SV40 DNA synthesis. 相似文献
9.
Alignment of the Genome of Monkey B-Lymphotropic Papovavirus to the Genomes of Simian Virus 40 and BK Virus
下载免费PDF全文

We located the origin of DNA replication of African green monkey B-lymphotropic papovavirus DNA by analyzing pulse-labeled form I DNA. With the replication origin used as a reference point, the B-lymphotropic papovavirus genome was aligned with the genomes of simian virus 40 and BK virus from DNA homology between specific fragments hybridized under low-stringency conditions. From the results of these experiments, it was possible to deduce the correlation between the physical and functional maps of the B-lymphotropic papovavirus genome. 相似文献
10.
Nucleoprotein Complexes Containing Replicating Simian Virus 40 DNA: Comparison with Polyoma Nucleoprotein Complexes 总被引:11,自引:11,他引:11
下载免费PDF全文

Procedures for isolating nucleoprotein complexes containing replicating polyoma DNA from infected mouse cells were used to prepare short-lived nucleoprotein complexes (r-SV40 complexes) containing replicating simian virus 40 (SV40) DNA from infected monkey cells. Like the polyoma complexes, r-SV40 complexes were only partially released from nuclei by cell lysis but could be extracted from nuclei by prolonged treatment with solutions containing Triton X-100. r-SV40 complexes sedimented faster than complexes containing SV40 supercoiled DNA (SV40 complex) in sucrose gradients, and both types of SV40 nucleoprotein complexes sedimented ahead of polyoma complexes containing supercoiled polyoma DNA (py complex). The sedimentation rates of py complex and SV40 complex were 56 and 61S, respectively, based on the sedimentation rate of the mouse large ribosomal subunit as a marker. r-SV40 complexes sedimented as multiple peaks between 56 and 75S. Sedimentation and buoyant density measurements indicated that protein is bound to all forms of SV40 DNA at about the same ratio of protein to DNA (1-2/1) as was reported for polyoma nucleoproteins. 相似文献
11.
Oligomeric forms of simian virus 40 (SV40) deoxyribonucleic acid (DNA) were isolated from monkey kidney cells infected with two plaque morphology mutants of SV40. Recombinant, large clear-plaque-type SV40 was produced in cells productively infected with oligomeric forms of SV40 DNA. 相似文献
12.
Nine lines of doubly cloned Simian Virus 40 transformed human fibroblasts have been isolated. Precrisis in vitro characteristics of growth rate, saturation density, T antigen expression, growth in methylcellulose suspension, protease production and infectious center formation were widely divergent, although distinct for individual lines. Lines with higher T antigen expression had higher growth rates and saturation densities but grew less well in methylcellulose. Chromosome counts in most proliferating lines were in the 38–48 range; one line had 67, whereas another, poorly growing line showed 22. No distinguishing chromosomal abnormalities were present. This biologic heterogeneity suggests distinct molecular differences underlying transformation in the lines and emphasizes the importance of considering various factors as indicative of the transformed state. 相似文献
13.
Shannon M. McQuaig Troy M. Scott Jerzy O. Lukasik John H. Paul Valerie J. Harwood 《Applied and environmental microbiology》2009,75(11):3379-3388
In the United States, total maximum daily load standards for bodies of water that do not meet bacterial water quality standards are set by each state. The presence of human polyomaviruses (HPyVs) can be used as an indicator of human-associated sewage pollution in these waters. We have developed and optimized a TaqMan quantitative PCR (QPCR) assay based on the conserved T antigen to both quantify and simultaneously detect two HPyVs; JC virus and BK virus. The QPCR assay was able to consistently quantify ≥10 gene copies per reaction and is linear over 5 orders of magnitude. HPyVs were consistently detected in human waste samples (57 of 64) and environmental waters with known human fecal contamination (5 of 5) and were not amplified in DNA extracted from 127 animal waste samples from 14 species. HPyV concentrations in sewage decreased 81.2 and 84.2% over 28 days incubation at 25 and 35°C, respectively. HPyVs results were compared to Escherichia coli, fecal coliform, and enterococci concentrations and the presence of three other human-associated microbes: Bacteroidetes, Methanobrevibacter smithii, and adenovirus. HPyVs were the most frequently detected of these in human and contaminated environmental samples and were more human specific than the Bacteroidetes (HF183) or M. smithii. HPyVs and M. smithii more closely mimicked the persistence of adenovirus in sewage than the other microbes. The use of this rapid and quantitative assay in water quality research could help regulatory agencies to identify sources of water pollution for improved remediation of contaminated waters and ultimately protect humans from exposure to pathogens.Maintaining healthy coastal water systems is essential, since poor water quality can have detrimental effects on mangroves, seagrass beds, coral reefs, the fishing and shellfish harvesting industries, and the health of recreational water users (1, 5, 15, 17, 20, 44). Since 1972 in the United States, each state has been required to set total maximum daily loads (TMDLs) for pollutants in water bodies according to section 303(d) of the Clean Water Act (50). The probability that microbial pathogens are present is estimated by enumerating indicator bacteria, which are shed in the feces of humans and most animals. The U.S. Environmental Protection Agency recommends using Escherichia coli and enterococci to assess the quality of freshwater and saline water, respectively (47); however, Florida currently uses fecal coliforms and enterococci as indicators of fecal pollution (42).When bacterial indicators exceed regulatory levels, a plan of action (TMDL implementation) must be developed to reduce pathogens. TMDL plans for “pathogen” reduction are particularly problematic because they rely upon surrogate indicator bacteria, which yield little or no insight as to the source of pollution. High indicator bacteria concentrations can be attributed to many sources, including agricultural runoff, storm water runoff, wildlife, pets, faulty septic systems (onsite wastewater treatment and disposal systems), and a failing central sewer infrastructure (5, 12, 28).To address the issue of source identification, methods have been developed in which the biochemistry or genetics of certain microorganisms are used to indirectly identify probable source(s) of fecal pollution, which is termed microbial source tracking (MST) (48). MST methods based on detection of a source-associated gene (marker) by PCR have proliferated over the past 10 years due to the additional information they can provide to watershed managers on fecal contamination sources (43). Although marker detection by endpoint (binary) PCR can give important insights on the source(s) of fecal contamination, quantitative measurements can provide information about the relative magnitude of contamination from various sources. Moreover, epidemiological studies on the correlation between recreational water use, microbial contamination, and the risk of illness will greatly benefit from the ability to quantify MST markers, rather than simply assessing binary (+/−) detection.Although many bacterial targets have been proposed for MST of human sewage (8, 39, 46a), fewer viral targets have been investigated (19, 24, 33). Polyomavirus is the sole genus in the family Polyomaviridae (22). These viruses have a 5-kbp double-stranded DNA genome surrounded by a 40- to 50-nm icosahedral capsid (38). The JCV and BKV human polyomaviruses (HPyVs) have similarly structured genomes that show ∼75% identity (21). BK virus (BKV) and JC virus (JCV) gained much attention in the late 1970s as the etiological agents of kidney nephritis (i.e., BKV reactivation in the kidneys) and progressive multifocal leukoencephalopathy (i.e., JCV reactivation in brain tissue) in the immunocompromised (16, 34). Serological studies have shown that >70% of adults harbor antibodies to BKV or JCV (27, 30, 44). These viruses are known for producing lifelong, asymptomatic viruria in immunocompetent individuals (37). In 2000 it was first suggested that JCV would be a useful indicator of human sewage in water (11). The obligate host specificity and abundance of BKV and JCV in municipal sewage has led to the successful use of these viruses to indicate human fecal pollution in environmental water samples (12, 29).Due to the health implications of BKV and JCV, several methods have been developed to rapidly detect either BKV or JCV in clinical samples (6, 31, 35, 56). However, from an MST standpoint, it is advantageous to target both BKV and JCV. BKV has been found in feces (54), and both viruses are excreted in the urine (6, 11, 37, 55, 60) either simultaneously or individually. The focus of this research was the modification of the previously developed nested PCR protocol for HPyVs detection (29) to a TaqMan quantitative PCR (QPCR) assay to simultaneously detect and quantify both BKV and JCV. Furthermore, we compared measurements obtained with the newly developed QPCR assay to those of other water quality indicators and MST markers. These indicators included bacterial indicator concentrations (49) and PCR detection of human-associated markers currently used for MST. These included human-associated Bacteroidetes (8), Methanobrevibacter smithii (46a), and adenovirus (36). To assess the potential of HPyVs to mimic the fate of pathogens in water, the persistence of all of the water quality indicators was assessed, and relationships between bacterial indicator organisms and MST markers in both human waste samples as well as contaminated environmental samples were examined. 相似文献
14.
Deoxyribonucleic Acid Replication in Simian Virus 40-Infected Cells: II. Detection and Characterization of Simian Virus 40 Pseudovirions 总被引:3,自引:14,他引:3
下载免费PDF全文

Purified simian virus 40 (SV40) virions, grown in primary African green monkey kidney cells labeled prior to infection with (3)H-thymidine, contain a variable quantity of (3)H-labeled deoxyribonucleic acid (DNA). This DNA is resistant to deoxyribonuclease, sediments at 250S, and is enclosed in a particle that can be precipitated with SV40-specific antiserum. DNA-DNA hybridization experiments demonstrate that this (3)H-labeled component in purified SV40 virions is cellular DNA. When this (3)H-labeled DNA is released from purified virus with sodium dodecyl sulfate, it has an average sedimentation constant of 14S. Sedimentation through neutral and alkaline sucrose gradients shows that this 14S DNA is composed of a collection of different sizes of DNA molecules that sediment between 11 and 15S. As a result of this size heterogeneity, SV40 virions containing cellular DNA (pseudovirions) have a variable DNA to capsid protein ratio and exhibit a spectrum of buoyant densities in a CsCl equilibrium gradient. Pseudovirions are enriched, relative to true virions, on the lighter density side of infectious SV40 virus banded to equilibrium in a CsCl gradient. Little or no cellular DNA was found in purified SV40 virus preparations grown in BSC-1 or CV-1 cells. 相似文献
15.
Structural Proteins of Simian Virus 40: Phosphoproteins 总被引:2,自引:23,他引:2
All five structural polypeptides of infectious simian virus 40 grown in African green monkey kidney cells were found to be phosphorylated. The polypeptides with the largest and smallest molecular weights are phosphorylated to a somewhat lower extent than the other polypeptides. The protein moiety of "empty" virus, which is essentially devoid of deoxyribonucleic acid, exhibited a degree of phosphorylation similar to that of infectious virus. In the major polypeptide (molecular weight: 49,000), the phosphate appears to be bound to the seryl or threonyl residues, or both. The nature of the phosphate-polypeptide bond in the other viral polypeptides remains obscure. 相似文献
16.
DNA of Epstein-Barr Virus. II. Comparison of the Molecular Weights of Restriction Endonuclease Fragments of the DNA of Epstein-Barr Virus Strains and Identification of End Fragments of the B95-8 Strain 总被引:3,自引:4,他引:3
下载免费PDF全文

Incubation of the DNA of the B95-8 strain of Epstein-Barr virus [EBV (B95-8) DNA] with EcoRI, Hsu I, Sal I, or Kpn I restriction endonuclease yielded 8 to 15 fragments separable on 0.4% agarose gels and ranging in molecular weight from less than 1 to more than 30 x 10(6). Bam I and Bgl II yielded fragments smaller than 11 x 10(6). Preincubation of EBV (B95-8) DNA with lambda exonuclease resulted in a decrease in the Hsu I A and Sal I A and D fragments, indicating that these fragments are positioned near termini. The electrophoretic profiles of the fragments produced by cleavage of the DNA of the B95-8, HR-1, and Jijoye strains of EBV were each distinctive. The molecular weights of some EcoRI, Hsu I, and Sal I fragments from the DNA of the HR-1 strain of EBV [EBV (HR-1) DNA] and of EcoRI fragments of the DNA of the Jijoye strain of EBV were identical to that of fragments produced by cleavage of EBV (B95-8) DNA with the same enzyme, whereas others were unique to each strain. Some Hsu I, EcoRI, and Sal I fragments of EBV (HR-1) DNA and Kpn I fragments of EBV (B95-8) DNA were present in half-molar abundance relative to the majority of the fragments. In these instances, the sum of the molecular weights of the fragments was in excess of 10(8), the known molecular weight of EBV (HR-1) and (B95-8) DNA. The simplest interpretation of this finding is that each EBV (HR-1), and possibly also (B95-8), DNA preparation contains two populations of DNA molecules that differ in the arrangement of DNA sequences about a single point, such as has been described for herpes simplex virus DNA. Minor fragments could also be observed if there were more than one difference in primary structure of the DNAs. The data do not exclude more extensive heterogeneity in primary structure of the DNA of the HR-1 strain. However, the observation that the relative molar abundance of major and minor fragments of EBV (HR-1) DNA did not vary between preparations from cultures that had been maintained separately for several years favors the former hypothesis over the latter. 相似文献
17.
Response of Simian Virus 40-Transformed Cell Lines and Cell Hybrids to Superinfection with Simian Virus 40 and Its Deoxyribonucleic Acid 总被引:4,自引:9,他引:4
下载免费PDF全文

Peter Swetly Giuseppe Barbanti Brodano Barbara Knowles Hilary Koprowski 《Journal of virology》1969,4(4):348-355
Whereas normal human and monkey cells were susceptible both to intact simian virus 40 (SV40) and to SV40 deoxyribonucleic acid (DNA), human and monkey cells transformed by SV40 were incapable of producing infectious virus after exposure to SV40, but displayed susceptibility to SV40 DNA. On the other hand, mouse and hamster cells, either normal or SV40-transformed, were resistant both to the virus and to SV40 DNA. Hybrids between permissive and nonpermissive parental cells revealed a complex response: whereas most hybrids tested were resistant, three of them produced a small amount of infectious virus upon challenge with SV40 DNA. All were resistant to whole virus challenge. The persistence of infectious SV40 DNA in permissive and nonpermissive cells up to 96 hr after infection was ascertained by cell fusion. The decay kinetics proved to be quite different in permissive and nonpermissive cells. Adsorption of SV40 varied widely among the different cell lines. Very low adsorption of SV40 was detected in nonsusceptible cells with the exception of the mKS-BU100 cell line. A strong increase in SV40 adsorption was produced by pretreating cells with polyoma virus. In spite of this increased adsorption, the resistance displayed by SV40-transformed cells to superinfection with the virus was maintained. 相似文献
18.
Deoxyribonucleic Acid Replication in Simian Virus 40-Infected Cells: III. Comparison of Simian Virus 40 Lytic Infection in Three Different Monkey Kidney Cell Lines
下载免费PDF全文

A comparative study of simian virus 40 (SV40) lytic infection in three different monkey cell lines is described. The results demonstrate that viral deoxyribonucleic acid (DNA) synthesis and infectious virus production begin some 10 to 20 hr earlier in CV-1 cells and primary African green monkey kidney (AGMK) cells than in BSC-1 cells. Induction of cellular DNA synthesis by SV40 was observed in CV-1 and AGMK cells but not with BSC-1 cells. Excision of large molecular weight cellular DNA to smaller fragments was easily detectable late in infection of AGMK cells. Little or no excision was observed at comparable times after infection of CV-1 and BSC-1 cells. The different kinds of responses of these three monkey cell lines during SV40 lytic infection suggest the involvement of cellular functions in the virus-directed induction of cellular DNA synthesis and the excision of this DNA from the genome. 相似文献
19.
Simian Virus 40-Host Cell Interactions II. Cytoplasmic and Nucleolar Accumulation of Simian Virus 40 Virion Protein 总被引:1,自引:2,他引:1
下载免费PDF全文

We have used immunofluorescence in parallel with transmission and scanning electron microscopy to characterize the unusual cytoplasmic and nucleolar accumulation of Simian virus 40 (SV40) virion protein (C antigen) at restrictive temperatures (39 to 41 C) in monkey cells infected with a temperature-sensitive mutant of SV40 defective in virion assembly, tsB11. Cytoplasmic and nucleolar accumulation of C antigen did not occur in wild-type-infected cells at any temperature. Wild-type- and tsBll-infected cells were not distinguishable at 33 C by immunofluorescence or electron microscopy. Temperature-shift experiments using metabolic inhibitors of DNA (cytosine arabinonucleoside, 20 mug/ml), RNA (actinomycin D, 5 mug/ml), and protein synthesis (cycloheximide, 2 x 10(-4) to 10 x 10(-4) M) were used to investigate the requirements for ongoing DNA, RNA, and protein synthesis in the distribution of virion protein between the nucleus, nucleolus, and cytoplasm. The transport of C antigen from the nucleolus and cytoplasm into the nucleus was complete after a temperature shift-down (41 and 39 to 33 C). Limited virus particle formation occurred after the shift-down in the presence of actinomycin D and cycloheximide, indicating some of the 39 to 41 C synthesized virion protein could be used for capsid assembly at 33 C in the absence of further virion protein synthesis. Nucleolar and cytoplasmic accumulations of C antigen occurred in the absence of drugs after a shift-up (33 to 39 C and 41 C) indicating a continuous requirement for the tsB11 mutant function. Furthermore, the virion protein synthesized at 33 C remained confined to the nucleus when the cells were shifted to 39 and 41 C in the presence of actinomycin D or cycloheximide. In the presence of cytosine arabinonucleoside, however, the virion protein accumulated in large aggregates in the nucleus and nucleolus after the shift-up, but did not migrate into the cytoplasm as it did in drug-free tsB11-infected control cells. Colchicine (10(-3) M) had no effect on the abnormal accumulation of C antigen during shift-up or shift-down experiments suggesting that microtubular transport plays little if any role in the abnormal transport of tsB11 virion protein from cytoplasm to nucleus. Although virus particles were never observed by electron microscopy and V antigen was not detected by immunofluorescence at 39 or 41 C in tsB11-infected cells, dense amorphous accumulations were formed in the nucleoli and cytoplasm. We suggest that the tsB11 function is continuously required for the normal transport of SV40 virion protein between the cytoplasm, nucleolus, and nucleus and for the assembly of capsids and virions. Several possible mechanisms for the altered tsB11 function or protein are discussed. One of the virion proteins may also be involved in some presently undetermined nucleolar function during SV40 productive infection. 相似文献
20.
James E. Cleaver 《Journal of virology》1974,14(6):1607-1610
Dimethyl sulfoxide (DMSO) added to agar overlays during plaque assays of simian virus 40 (SV40) in CV1 monkey cells increases the plaque size and number and enables plaques to be read several days earlier than usual. DMSO appears to act during development of plaques, perhaps by causing cell lysis at smaller burst sizes in the presence of near-lethal DMSO concentrations. It does not act synergistically in determining virus inactivation with UV light and is equally effective on wild type and a late mutant of SV40. 相似文献