首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been suggested that potentials measured with conventional microelectrodes in chemically or mechanically skinned muscle fibers arise from a Donnan equilibrium due to myofilament fixed charges. This hypothesis was tested in mechanically skinned frog (Rana pipiens) semitendinosus fibers by measuring the distribution potential (Ed) between fiber and bath with 3 M KCl-filled microelectrodes and the K+ activity gradient (aik/aok) with K+ ion-selective microelectrodes (KISE). If skinned fibers are a Donnan system, Ed should become more positive as pH is decreased, altering the fixed charge on the myofilaments. Consistent with this expectation, Ed was -4.4, -0.6, and +4.8 mV in ATP-containing solutions and -6.5, -2.2, and +8.4 mV in ATP-free solutions at pH 7, 6, and 5, respectively. Donnan equilibrium also requires that all mobile ionic species be in electrochemical equilibrium. In ATP-containing solutions, this was true for K+ at pH 7. At pH 5, however, KISE indicated that K+ was not in equilibrium; average Ed was 5.9 mV positive to the K+ equilibrium potential, and aik/aok was 1.04, while the Donnan prediction was 0.83. In contrast, KISE measurements in ATP-free solutions indicated that K+ was in equilibrium at all pH studied. Skinned fibers in ATP-containing media are not equilibrium systems because ATPase reactions occur. Under our conditions, frog myofibrils hydrolyze 0.4 and 0.08 mumol ATP/min X mg myofibrillar protein at pH 7 and 5, respectively. It is suggested that in the presence of ATP, Ed is a superposition of Donnan and diffusion potentials, the latter arising from differences in the mobilities of anionic substrate and products that diffuse through the charged myofilament lattice.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Using a combination of microelectrode measurements and high-power microscopy we have demonstrated that different Donnan potentials can be recorded from the A- and I-bands of glycerinated and chemically skinned muscles in rigor, so that the A-band fixed charge concentration exceeds the I-band fixed charge concentration in the rigor condition. In relaxation the two potentials, and therefore the two charge concentrations, are equal in the two bands. X-ray data are presented for relaxed and rigor rat semitendinosus muscle, chemically skinned, and actin and myosin filament charges are calculated under a variety of conditions. Our conclusions are that (a) the fixed (protein) charge is different in the A- and I-bands of striated muscle in the rigor state; (b) the fixed charges are equal in the A- and I-bands of relaxed muscle; (c) the largest charge change between relaxation and rigor is on the thick filament. This occurs whether or not the myosin heads are cross-linked to the thin filaments. (d) Possibly an event on the myosin molecule, the binding of ATP (or certain other ligands) causes a disseminated change that modifies the ion-binding capacity of the myosin rods, or part of them.  相似文献   

3.
In previous papers we used estimates of the composition of frog muscle and calculations involving the likely fixed charge density in myofibrils to propose bathing solutions for skinned fibers, which best mimic the normal intracellular milieu of intact muscle fibers. We tested predictions of this calculation using measurements of the potential across the boundary of skinned frog muscle fibers bathed in this solution. The average potential was -3.1 mV, close to that predicted from a simple Donnan equilibrium. The contribution of ATP hydrolysis to a diffusion potential was probably small because addition of 1 mM vanadate to the solution decreased the fiber actomyosin ATPase rate (measured by high-performance liquid chromatography) by at least 73% but had little effect on the measured potential. Using these solutions, we obtained force-pCa curves from mechanically skinned fibers at three different temperatures, allowing the solution pH to change with temperature in the same fashion as the intracellular pH of intact fibers varies with temperature. The bath concentration of Ca2+ required for half-maximal activation of isometric force was 1.45 microM (22 degrees C, pH 7.18), 2.58 microM (16 degrees C, pH 7.25), and 3.36 microM (5 degrees C, pH 7.59). The [Ca2+] at the threshold of activation at 16 degrees C was approximately 1 microM, in good agreement with estimates of threshold [Ca2+] in intact frog muscle fibers.  相似文献   

4.
Donnan potentials from A-bands and I-bands were measured as a function of sarcomere length in skinned long-tonic muscle fibers of the crayfish. These measurements were made using standard electrophysiological technique. Simultaneously, the relative cross-sectional area of the fibers was determined. Lattice plane spacings and hence unit-cell volumes were determined by low-angle x-ray diffraction. At a sarcomere length at which the myosin filaments and actin filaments nominally do not overlap, measurements of potential, relative cross-sectional area, and unit-cell volume were used in conjunction with Donnan equilibrium theory to calculate the effective linear charge densities along the myosin filament (6.6 X 10(4) e-/mu) and actin filament (6.8 X 10(3) e-/mu). Using these linear charge densities, unit-cell volumes and Donnan equilibrium theory, an algorithm was developed to predict A-band and I-band potentials at any sarcomere length. Over the range of sarcomere lengths investigated, the predicted values coincide with the experimental data. The ability of the model to predict the data demonstrates the applicability of Donnan equilibrium theory to measurements of electrochemical potential from liquid-crystalline systems.  相似文献   

5.
"Skinned" muscle fibers, single fibers from the frog semitendinosus muscle in which the sarcolemma had been removed, could be reversibly activated by electrical stimulation. Electrical responsiveness was abolished when the skinned fiber was prepared from a muscle exposed to a cardiac glycoside, and the development of responsiveness was delayed when the muscle was bathed in high potassium solution. The findings were taken as evidence that active sodium-potassium exchange across the internal membranes restored electrical excitability, after the sarcolemma had been removed, by establishing a potential gradient across the internal membranes. In general, the contractions were graded with the strength of the applied current. On occasion, however, "all-or-none" type responses were seen, raising the possibility that the internal membranes were capable of an electrically regenerative response. Activation could also be produced by an elevation of the intracellular chloride ion concentration or a decrease in the intracellular potassium, ion concentration, suggesting that depolarization of some element of the internal membrane system, that is, a decrease in the potential of the lumen of the internal membrane system relative to the potential of the myofibrillar space, was responsible for activation in these experiments. The distribution of both the electrically induced contractions and those produced by changes in the intracellular ion concentrations indicated that the responsive element of the internal membrane system was electrically continuous over many sarcomeres.  相似文献   

6.
Bert A. Mobley 《BBA》1977,459(2):325-328
Rigor contractions were examined in skinned frog muscle fibers. The concentrations of calcium ions, pCa = 9.0?5.0, in the solutions which caused rigor were shown to affect the magnitude and time course of the contractions.  相似文献   

7.
Here we present evidence that strongly suggests that the well-documented phenomenon of A-band shortening in Limulus telson muscle is activation dependent and reflects fragmentation of thick filaments at their ends. Calcium activation of detergent-skinned fiber bundles of Limulus telson muscle results in large decreases in A-band (from 5.1 to 3.3 microns) and thick filament (from 4.1 to 3.3 microns) lengths and the release of filament end fragments. In activated fibers, maintained stretched beyond overlap of thick and thin filaments, these end fragments are translocated to varying depths within the I-bands. Here they are closely associated with fine filamentous structures that also span the gap between A- and I-bands and attach to the distal one-third of the thick filaments. End-fragments are rarely, if ever, present in similarly stretched and skinned, but unstimulated fibers, although fine "gap filaments" persist. Negatively stained thick filaments, separated from skinned, calcium-activated, fiber bundles, allowed to shorten freely, are significantly shorter than those obtained from unstimulated fibers, but are identical to the latter with respect to both the surface helical array of myosin heads and diameters. Many end-fragments are present on grids containing thick filaments from activated fibers; few, if any, on those from unstimulated fibers. SDS-PAGE shows no evidence of proteolysis due to activation and demonstrates the presence of polypeptides with very high molecular weights in the preparations. We suggest that thick filament shortening is a direct result of activation in Limulus telson muscle and that it occurs largely by breakage within a defined distal region of each polar half of the filament. It is possible that at least some of the fine "gap filaments" are composed of a titin-like protein. They may move the activation-produced, fragmented ends of thick filaments to which they attach, into the I-bands by elastic recoil, in highly stretched fibers.  相似文献   

8.
Electrochemical potentials were measured as a function of myofilament packing density in crayfish striated muscle. The A-band striations are supramolecular smectic B1 lattice assemblies of myosin filaments and the I-band striations are nematic liquid crystals of actin filaments. Both A- and I-bands generate potentials derived from the fixed charge that is associated with structural proteins. In the reported experiments, filament packing density was varied by osmotically reducing lattice volume. The electrochemical potentials were measured from the A- and I-bands in the relaxed condition over a range of lattice volumes. From the measurements of relative cross-sectional area, unit-cell volume (obtained by low-angle x-ray diffraction) and previously determined effective linear charge densities (Aldoroty, R.A., N.B. Garty, and E.W. April, 1985, Biophys. J., 47:89-96), Donnan potentials can be predicted for any amount of compression. In the relaxed condition, the predicted Donnan potentials correspond to the measured electrochemical potentials. In the rigor condition, however, a net increase in negative charge associated with the myosin filament is observed. The predictability of the data demonstrates the applicability of Donnan equilibrium theory to the measurement of electrochemical potentials from liquid-crystalline systems. Moreover, the relationship between filament spacing and the Donnan potential is consistent with the concept that surface charge provides the necessary electrostatic force to stabilize the myofilament lattice.  相似文献   

9.
A new optical-electronic method has been developed to detect striation spacing of single muscle fibers. The technique avoids Bragg-angle and interference-fringe effects associated with laser light diffraction by using polychromatic (white) light. The light is diffracted once by an acousto-optical device and then diffracted again by the muscle fiber. The double diffraction reverses the chromatic dispersion normally obtained with polychromatic light. In frog skinned muscle fibers, active and passive sarcomere shortening were smooth when observed by white light diffraction, whereas steps and pauses occurred in the striation spacing signals obtained with laser illumination. During active contractions skinned fibers shortened at high rates (3-5 microns/s per half sarcomere, 0-5 degrees C) at loads below 5% of isometric tension. Compression of the myofibrillar lateral filament spacing using osmotic agents reduced the shortening velocity at low loads. A hypothesis is presented that high shortening velocities are observed with skinned muscle fibers because the cross-bridges cannot support compressive loads when the filament lattice is swollen.  相似文献   

10.
电磁场对完整和去膜青蛙肌纤维作用的比较研究表明,交变电场通过改变膜电位引起肌肉收缩,在此过程中收缩蛋白质的空间位置而非自身构象发生变化,横桥尤其是S-2片段,在伴随横桥从弱耦合状态向强耦合状态过渡时远离粗肌丝而向细肌丝运动,使其与粗肌丝骨架的平均取向比松弛状态或静息状态时相对增大.一般强度恒定磁场对肌纤维膜电位状态及肌纤维内部蛋白质分子的运动及其相互作用影响极其微弱.  相似文献   

11.
The effect of elevated divalent cation concentration on the kinetics of sodium ionic and gating currents was studied in voltage-clamped frog skeletal muscle fibers. Raising the Ca concentration from 2 to 40 mM resulted in nearly identical 30-mV shifts in the time courses of activation, inactivation, tail current decay, and ON and OFF gating currents, and in the steady state levels of inactivation, charge immobilization, and charge vs. voltage. Adding 38 mM Mg to the 2 mM Ca bathing a fiber produced a smaller shift of approximately 20 mV in gating current kinetics and the charge vs. voltage relationship. The results with both Ca and Mg are consistent with the hypothesis that elevated concentrations of these alkali earth cations alter Na channel gating by changing the membrane surface potential. The different shifts produced by Ca and Mg are consistent with the hypothesis that the two ions bind to fixed membrane surface charges with different affinities, in addition to possible screening.  相似文献   

12.
Ion gradients imposed across an internal membrane system stimulate skinned muscle fibers; to evaluate the sarcoplasmic reticulum (SR) as the primary target site, SR polarization under resting and stimulatory conditions was assessed from fiber uptake of permeant probe ions. Solvent spaces were estimated from simultaneous [14C]urea (U) or [3H]deoxyglucose (DOG) uptake in segments of fibers from bullfrog semitendinosus muscle, skinned by microdissection. The distribution spaces, i.e., virtual solvent volumes at bath concentrations (Vu and VDOG), of these uncharged probes correlated well with the protein content of the same segments, which validated the tracer methodology for volume normalization. The membrane-bounded volume fraction (Vm), derived from the difference between total solvent volume (Vs) and the non-membrane-bounded solvent volume (Vc), was sufficient to detect appreciable SR ion accumulation. The Vm estimated from the difference between VU and VDOG assayed simultaneously with 2 or 5-6 min exposures was 10-11%, which is consistent with the morphometric volume fraction (mostly SR) in frog fibers; however, the change in this difference after membrane permeabilization corresponded to Vm only 5%. The change in permeant ion distribution space caused by member permeabilization was used to assess SR membrane polarization, assuming the free ions distribute across the intact membrane according to the Nernst ratio. Resting polarization (SR lumen positive) was assessed from [14C]SCN- or [14C]propionate- distribution spaces in unstimulated fibers, expressed relative to VDOG (assayed simultaneously). The ratios for (a) [14C]SCN- space (carrier 2 mM) and (b) [14C]propionate- space (carrier 120 mM) were not decreased by membrane permeabilization. This indicated that anion distribution was independent of membrane integrity and did not reflect an SR transmembrane potential, although a was more and b was less than 1. Polarization under stimulatory conditions (lumen negative) was assessed from 86Rb+ distribution, before and after an imposed ion gradient (choline Cl replacement of K methanesulfonate (KMes) at constant [K+] [Cl-]) that theoretically could generate a 48-fold transmembrane cation ratio; Ca release was minimized by EGTA. The ratio of 86Rb+ space to VU, greater than 1 in KMes (120 mM K, the effective carrier), was higher in choline Cl (2.5 mM K) but not decreased by membrane permeabilization; this indicated that 86Rb+ distribution did not reflect an SR transmembrane potential. Similar results in the presence of valinomycin ruled out the possibility of inadequate 86Rb+ equilibration.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
In this study, the effects of phospholipase A2 (PLA2) inhibitors on excitation-contraction coupling (ECC) and sarcoplasmic reticulum (SR) function were examined in skinned extensor digitorum longus (EDL) muscle fibers of the rat. The nonspecific PLA2 inhibitor indomethacin (200 microM) significantly increased the peak (approximately 2-fold, P = 0.02) and the width (approximately 6-fold, P = 0.008) of depolarization-induced force responses (DIFRs) elicited in the fibers (n = 4). Exposure of the skinned EDL fibers to indomethacin (200 microM) (n = 7) and another PLA2 inhibitor quinacrine (200 microM) (n = 5) resulted in the return of large DIFRs after use-dependent rundown. However, aristolochic acid (100 microM), an inhibitor of secretory PLA2, failed to return DIFRs after rundown. Indomethacin did not protect against the loss of DIFRs induced by exposure to elevated myofibrillar [Ca2+]. Indomethacin (200 microM) produced a small but significant increase in the Ca2+ sensitivity of the contractile apparatus of skinned EDL fibers and the maximum force production. Indomethacin (200 microM) also had significant effects on SR function, increasing SR Ca2+ loading in the skinned fibers (117.2 +/- 3.0% of controls, P = 0.0008, n = 8) and inducing intracellular Ca2+ release in isolated intact flexor digitorum brevis (FDB) fibers (n = 7) and C2C12 myotubes (n = 6). These data suggest that intracellular PLA2 may be an important modulator of ECC in skeletal muscle.  相似文献   

14.
A-band and I-band potentials are measured selectively in crayfish skinned long-tonic muscle fibers. The microelectrode tip diameters used in this study are shown to be sufficiently small to permit the discrete placement of an electrode into either an A-band or I-band. Random and directed impalements into mechanically skinned fibers with microelectrodes yields reproducible trimodal distributions of potentials where the modalities represent the A-band (-1.80 mV), the I-band (-0.76 mV), and the Z-line vicinity (-3.63 mV). In conjunction with Donnan equilibrium theory, fixed charge concentrations are calculated from the measured potentials for the A-band (25.9 mmol e-/l), I-band (10.9 mmol e-/l), and Z-line vicinity (52.3 mmol e-/l). When skinned fibers are treated with Triton X-100, the mean potentials (and charge concentrations) decrease: A-band to -1.71 mV (24.6 mmol e-/l), I-band to -0.71 mV (10.2 mmol e-/l), and the Z-line vicinity to -3.40 mV (49.0 mmol e/l). In the A-band this represents a loss of 1.3 mmol e-/l while in the I-band 0.7 mmol e-/l are lost; both decreases are attributed to the removal of internal membranous structures. In the rigor condition the A-band increases to -2.18 mV (33.1 mmol e-/l) and the I-band increases to -0.88 mV (13.3 mmol e-/l). Relative to the relaxed condition, this represents an increase of 8.5 mmol e-/l and 3.1 mmol e-/l in the A-band and I-band, respectively. The evidence shows that it is practical to measure A-band and I-band potentials selectively. Further, it is demonstrated that similar measurements can be obtained from agar, another polyelectrolyte gel system (see Appendix).  相似文献   

15.
The influence of stretch and radial compression on the width of mechanically skinned fibers from the semitendinosus muscle of the frog (R. pipiens) was examined in relaxing solutions with high-power light microscopy. Fibers were skinned under mineral oil. We find that, after correcting for water uptake in the oil, fiber width increased by an average of 28% upon transfer from oil to relaxing medium, with some tendency for greater swelling at longer sarcomere lengths. Subsequently, fibers were compressed by addition of the long-chain polymer polyvinylpyrrolidone (PVP-40, number average molecular weight 40,000) to relaxing solutions. Sarcomere length does not appear to be affected by addition of PVP. At any PVP concentration, the inverse square of the fiber width increased smoothly and linearly with increasing stretch for sarcomere lengths between 2.10 and 4.60 micrometer. At any fixed sarcomere length, fiber width decreased linearly with the logarithm of the osmotic compressive pressure exerted by PVP (2-10% concentration). From this logarithmic relation we estimate that the swelling pressure of the intact fiber is 3.40 x 10(3) N/m2, between that of a 2 and a 3% PVP solution. The pressure giving rise to fiber swelling is not due to dilation of the sarcoplasmic reticulum (SR), since the experimental results above were not significantly different after treatment with 0.5% BRIJ-58, a nonionic detergent that disrupts the SR. Swelling may be due simply to elastic structures within the fiber that are constrained in the intact cell. Values of bulk moduli of fibers, calculated from the compression experiments, and preliminary measurements of Young's modulus from stretch experiments, are quantitatively consistent with the idea that skinned fibers behave as nonisotropic elastic bodies.  相似文献   

16.
Light diffraction patterns from isolated frog semitendinosus muscle fibers were examined. When transilluminated by laser light, the muscle striations produce a diffraction pattern consisting of a series of lines that are projected as points onto an optical detector by a lens system. Diffraction data may be sequentially stored every 18 ms for later processing by digital computer systems. First- and second-order diffraction line intensities were examined from intact, chemically skinned, and glycerinated single fibers. The diffraction line intensities demonstrated a strong length dependence upon passive stretch from reference length to 3.6 micrometer. The first-order intensity linearly increased an average of 15-fold over the range examined. The magnitude of the second order intensity was less than the first order and showed an exponential rise with increasing length. Both first- and second-order intensities decreased upon muscle activation. Data from chemically skinned and glycerinated single fibers were not significantly different from intact fibers, indicating that the membrane structure has little effect upon the diffraction phenomenon in muscle. Theoretical model systems are examined in an attempt to find the basis of these results. Neither an analysis based on a diffraction grating with variable spacing nor the unit cell model of Fujime provides an explanation for the observed length dependency of intensity. Though the origin of the intensity decrease upon stimulation is not known, we have suggested that it could result from lateral misalignment of myofibrils and can occur upon activation.  相似文献   

17.
We examined effects of ryanodine on tension in intact and skinned amphibian skeletal muscle. 100 microM ryanodine (RY) alone in the frog Ringer's solution (FR) produced tension in the intact muscle reaching its peak by 1 h; 10 min treatment with RY augmented depolarization-induced tension and prevented a subsequent caffeine-induced contraction. In contrast, RY in Ca2+-free FR was unable to produce tension, after which caffeine produced irreversible tension. In skinned fibers, RY at pCa 6.5 produced tension and abolished a subsequent caffeine-induced contraction; while Ry in 2 mM EGTA did not produce tension. These data indicate that RY, in the presence of CA2+, releases CA2+ from the SR resulting in subsequent depletion of CA in the SR.  相似文献   

18.
Chemically skinned fibers from guinea pig taenia caecum were prepared by saponin treatment to study the smooth muscle contractile system in a state as close to the living state as posible. The skinned fibers showed tension development with an increase of Ca2+ in the solution, the threshold tension occurring as 5 X 10(-7) M Ca2+. The maximal tension induced with 10(-4) M Ca2+ was as large and rapid as the potassium-induced contracture in the intact fibers. The slope of the pCa tension curve was less steep than that of skeletal muscle fibers and shifted in the direction of lower pCa with an increase of MgATP. The presence of greater than 1 mM Mg2+ was required for Ca2+-induced contraction in the skinned fibers as well as for the activation of ATPase and superprecipitation in smooth muscle myosin B. Mg2+ above 2 mM caused a slow tension development by itself in the absence of Ca2+. Such a Mg2+-induced tension showed a linear relation to concentrations up to 8 mM in the presence of MgATP. Increase of MgATP concentration revealed a monophasic response without inhibition of Ca2+-induced tension development, unlike the biphasic response in striated muscle. When MgATP was removed from the relaxing solution, the tension developed slowly and slightly, even though the Mg2+ concentrations was fixed at 2 mM. These results suggest a substantial difference in the mode of actin-myosin interaction between smooth and skeletal muscle.  相似文献   

19.
Respiratory muscles involved in gill ventilation (= irrigation) of an amphibious siluroid fish, Clarias batrachus (Linn.) were studied by phase contrast and light microscopy after the treatment with PAS. Alcian Blue at pH 2.5 and 1.0, dialyzed iron and Toludine Blue. The transverse muscle bands lightly stained with PAS, Alcian Blue at pH 2.5 and 1.0 and Dialyzed Iron suggesting that the mucopolysaccharide occured in relatively low concentrations. Phase contrast microscopy indicated that the transverse bands stained by the above mentioned reagents correspond to the I-bands. Methylation for 4 hours at 60 degrees C prevented I-band staining with Alcian Blue in the muscles studied. Saponification alone left I-band alcianophilia intact. These findings reveal that myofibrillar I-bands of respiratory muscles contain sulphated acid mucosubstances.  相似文献   

20.
The elastic behavior of mechanically skinned skeletal muscle fibers in relaxing solution is modelled using equations developed by Flory (1953) for the elasticity of non-biological polymers. Mechanically, the relaxed skinned fiber is considered to be a semi-crystalline network of inextensible polymer chains, which are periodically cross-linked and which are bathed in an aqueous medium. We consider (1) configurational elastic forces in the network, (2) entropic forces due to mixing of polymer and water, (3) electrostatic forces due to fixed charges on the muscle proteins and mobile charges in the bathing solution, and (4) compressive forces due to large colloids in the bathing solution. Van der Waals forces are not considered since calculations show that they are probably negligible under our conditions. We derive an expression which relates known quantities (ionic strength, osmotic compressive pressure, and fiber width), experimentally estimated quantities (fixed charge density and volume fraction of muscle proteins), and derived quantities (concentration of cross-links and a parameter reflecting the interaction energy between protein and water).The model was tested by comparison with observed changes in skinned fiber width under a variety of experimental conditions which included changes in osmotic compressive pressure, pH, sarcomere length, and ionic strength. Over a wide range of compressive pressure (0–36 atm) the theory predicted the nonlinear relation between fiber width and logarithm of pressure. The direction and magnitude of the decrease in width when pH was decreased to 4 could be modelled asssuming the fixed charge density on the protein network was 0.34 moles of electrons per liter protein, a value in accordance with the estimates of others. The relation between width and sarcomere length over the complete range of compressive pressures could be modelled with the assumption that the number of cross-links increases somewhat with sarcomere length. Changes of width with ionic strength were modelled assuming that increasing salt concentration both increased the electrostatic shielding of fixed charges and decreased the number of cross-links. The decrease of fiber width in 1% glutaraldehyde was modelled by assuming that the concentration of crosslinks increased by some 10%. The theory predicted the order of magnitude but not the detailed shape of the passive tension-length relation which may indicate that, as with non-biological polymers, the theory does not adequately describe the behavior of semi-crystalline networks at high degrees of deformation.In summary, the theory provides a semiquantitative approach to an understanding of the nature and relative magnitudes of the forces underlying the mechanical behavior of relaxed skinned fibers. It indicates, for instance, that when fibers are returned to near their in vivo size with 3% PVP, the forces in order of their importance are: ¦ elastic forces ¦ ¦ entropic forces > ¦ electrostatic forces ¦ ¦ osmotic compressive forces ¦.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号