首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adult small and large intestines display distinct expression profiles of Bcl-2 homologs, known regulators of apoptosis. This is thought to indicate that control mechanisms of intestinal apoptosis are gut segment-specific. Little is known on the expression of Bcl-2 homologs during gut development. In man, intestinal features and functions are acquired largely by mid-gestation (18-20 wks); the question whether segment-specific controls of intestinal apoptosis are also acquired early during development remains open. In the present study, we approached this by investigating the expression of six Bcl-2 homologs (Bcl-2, Bcl-XL, Mcl-1, Bax, Bak, Bad), and one nonhomologous associated molecule (Bag-1), during development of the human ileum and colon (12-20 wks of gestation). Beginning at 18 wks, we found that the epithelial localization of Bcl-2 homologs displayed differential patterns (or gradients) in both the ileum and colon; however, the patterns of some of the homologs differed between the two segments. For instance, Bag-1 and Bcl-2 exhibited crypt-villus decreasing gradients of expression in the ileum but not in the colon, whereas Mcl-1 displayed differing compartimentalizations between the two segments. Further analyses indicated that the steady-state expression levels of Bcl-2 homologs underwent modulations between 12 and 20 wks; however, the observed developmental profiles contrasted significantly between the two segments. For example, Bcl-2, Bag-1 and Bak levels increased in the colon, but the levels of these same homologs decreased in the ileum. Furthermore, by 18-20 wks, we found that the expression levels of each Bcl-2 homolog analyzed differed greatly between the ileum and colon. Altogether, these data indicate that the expression of Bcl-2 homologs is modulated differentially during human gut development in order to establish, by mid-gestation, distinct expression profiles for the small and large intestines. This in turn suggests that gut segment-specific control mechanisms of human intestinal apoptosis are acquired early during fetal life.  相似文献   

2.
Intestinal epithelium undergoes a rapid self-renewal process characterized by the proliferation of the crypt cells, their differentiation into mature enterocytes as they migrate up to the villi, followed by their shedding as they become senescent villus enterocytes. The exact mechanism that regulates the intestinal epithelium renewal process is not well understood, but the differential expression of regulatory genes along the crypt-villus axis may have a role. Heme oxygenase-1 (HO-1) is involved in endothelial cell cycle progression, but its role in the intestinal epithelial cell turnover has not been explored. With its effects on cell proliferation and its differential expression along the crypt-villus axis, HO-1 may play a role in the intestinal epithelial cell renewal process. In this study, we examined the role of HO-1 in the proliferation and differentiation of Caco-2 cells, a well-established in vitro model for human enterocytes. After confluence, Caco-2 cells undergo spontaneous differentiation and mimic the crypt to villus maturation observed in vivo. In preconfluent and confluent Caco-2 cells, HO-1 protein expression was determined with the immunoblot. HO-1 activity was determined by the ability of the enzyme to generate bilirubin from hemin. The effect of a HO-1 enzyme activity inhibitor, tin protoporphyrin (SnPP), on Caco-2 cell proliferation and differentiation was examined. In preconfluent cells, cell number was determined periodically as a marker of proliferation. Cell viability was measured with MTT assay. Cell differentiation was assessed by the expression of a brush border enzyme, alkaline phophatase (ALP). HO-1 was expressed in subconfluent Caco-2 cells and remained detectable until 2 days postconfluency. This timing was consistent with cells starting their differentiation and taking the features of normal intestinal epithelial cells. HO-1 was inducible in confluent Caco-2 cells by the enzyme substrate, hemin in a dose- and time-dependent manner. SnPP decreased the cell number and viability of preconfluent cells and delayed the ALP enzyme activity of confluent cells. HO-1 may be involved in intestinal cell cycle progression.  相似文献   

3.
A model system is described for defining the physiologic functions of mammalian cadherins in vivo. 129/Sv embryonic stem (ES) cells, stably transfected with a dominant negative N-cadherin mutant (NCAD delta) under the control of a promoter that only functions in postmitotic enterocytes during their rapid, orderly, and continuous migration up small intestinal villi, were introduced into normal C57B1/6 (B6) blastocysts. In adult B6<->129/Sv chimeric mice, each villus receives the cellular output of several surrounding monoclonal crypts. A polyclonal villus located at the boundary of 129/Sv- and B6-derived intestinal epithelium contains vertical coherent bands of NCAD delta- producing enterocytes plus adjacent bands of normal B6-derived enterocytes. A comparison of the biological properties of these cell populations established that NCAD delta disrupts cell-cell and cell- matrix contacts, increases the rate of migration of enterocytes along the crypt-villus axis, results in a loss of their differentiated polarized phenotype, and produces precocious entry into a death program. These data indicate that enterocytic cadherins are critical cell survival factors that actively maintain intestinal epithelial function in vivo.  相似文献   

4.
Alterations in sialic acid and fucose contents of different populations of epithelial cells have been studied in suckling and adult rat intestine. The progression of cells from crypt base to villus tip is associated with an increase in sialic acid and a decrease in fucose levels of the cells in adult rats. In suckling pups, sialic acid is uniformly distributed along the length of villi, and fucose is richly (P less than 0.01) present in cryptic cells compared to that at the villus tip. Adult-type changes in sialylation and fucosylation of enterocytes across the crypt-villus axis were precociously produced by cortisone administration to suckling pups. Thyroxine treatment was less effective in influencing the glycosylation process in rat intestine.  相似文献   

5.
6.
The small and large intestines differ in their expression profiles of Bcl-2 homologs. Intestinal segment-specific Bcl-2 homolog expression profiles are acquired as early as by mid-gestation (18-20 weeks) in man. In the present study, we examined the question whether such distinctions underlie segment-specific control mechanisms of intestinal cell survival. Using mid-gestation human jejunum and colon organotypic cultures, we analyzed the impact of growth factors (namely insulin; 10 microg/ml) and pharmacological compounds that inhibit signal transduction molecules/pathways (namely tyrosine kinases, Fak, P13-K/Akt, and MEK/Erk) on cell survival and Bcl-2 homolog expression (anti-apoptotic: Bcl-2, Bcl-X(L), Mcl-1; pro-apoptotic: Bax, Bak, Bad). The relative activation levels of p125Fak, p42Erk-2, and p57Akt were analyzed as well. Herein, we report that (1) the inhibition of signal transduction molecules/pathways revealed striking differences in their impact on cell survival in the jejunum and colon (e.g., the inhibition of p125Fak induced apoptosis with a significantly greater extent in the jejunum [approximately 43%] than in the colon [approximately 24%]); (2) sharp distinctions between the two segments were noted in the modulatory effects of the various treatments on Bcl-2 homolog steady-state levels (e.g., inhibition of tyrosine kinase activities in the jejunum down-regulated all anti-apoptotics analyzed while increasing Bax, whereas the same treatment in the colon down-regulated Bcl-X(L) only and increased all pro-apoptotics); and (3) in addition to their differential impact on cell survival and Bcl-2 homolog expression, the MEK/Erk and P13-K/Akt pathways were found to be distinctively regulated in the jejunum and colon mucosae (e.g., insulin in the jejunum increased p42Erk-2 activation without affecting that of p57Akt, whereas the same treatment in the colon decreased p42Erk-2 activation while increasing that of p57Akt). Altogether, these data show that intestinal cell survival is characterized by segment-specific susceptibilities to apoptosis, which are in turn linked with segmental distinctions in the involvement of signaling pathways and the regulation of Bcl-2 homolog steady-state levels. Therefore, these indicate that cell survival is subject to segment-specific control mechanisms along the proximal-distal axis of the intestine.  相似文献   

7.
Enterocyte differentiation is correlated to the expression of specific proteins which only a few of them are identified. In this study, we characterize a new marker of enterocyte differentiation using monoclonal antibodies. We showed that small intestinal enterocytes specifically express a new 47 kDa protein named Enterocytin. Expression of this protein increase along the crypt-villus axis and it is concentrated in the terminal web, lateral plasma membrane domain, and nucleus membrane of mature enterocytes. A 1.8-kb cDNA of Enterocytin was isolated by expression cloning from a cDNA library of rabbit small intestine. The amino acid sequence obtained shows an N-terminal region with a coiled-coil structure and a B30.2-like domain in the C-terminus region. By co-transfection and immunoprecipitation procedures on Cos cells, it was observed that the coiled-coil domain is involved in the homodimerization of Enterocytin. In the human intestine, a similar 47 kDa protein was detected, exclusively in the small intestinal enterocytes. In addition, expression of this protein in Caco2 cells is correlated with the state of differentiation of these cells. The restricted expression of Enterocytin in the intestine and its localization in mature cells suggest that it may contribute to the differentiation processes and maintenance of the enterocytic polarity.  相似文献   

8.
9.
Although we stimulate enterocytic proliferation to ameliorate short gut syndrome or mucosal atrophy, less effort has been directed at enterocytic differentiation. Schlafen 3 (Slfn3) is a poorly understood protein induced during IEC-6 enterocytic differentiation. We hypothesized that exogenous manipulation of Slfn3 would regulate enterocytic differentiation in vivo. Adenoviral vector coding for Slfn3 cDNA (Ad-GFP-Slfn3) or silencing RNA for Slfn3 (siSlfn3) was introduced intraluminally into rat intestine. We assessed Slfn3, villin, sucrase-isomaltase (SI), Dpp4, and Glut2 by qRT-PCR, Western blot, and immunohistochemistry. We also studied Slfn3 and these differentiation markers in atrophic defunctionalized jejunal mucosa and the crypt-villus axis of normal jejunum. Ad-GFP-Slfn3 but not Ad-GFP increased Slfn3, villin and Dpp4 expression in human Caco-2 intestinal epithelial cells. Injecting Ad-GFP-Slfn3 into rat jejunum in vivo increased mucosal Slfn3 mRNA three days later vs. intraluminal Ad-GFP. This Slfn3 overexpression was associated with increases in all four differentiation markers. Injecting siSlfn3 into rat jejunum in vivo substantially reduced Slfn3 and all four intestinal mucosal differentiation markers three days later, as well as Dpp4 specific activity. Endogenous Slfn3 was reduced in atrophic mucosa from a blind-end Roux-en-Y anastomosis in parallel with differentiation marker expression together with AKT and p38 signaling. Slfn3 was more highly expressed in the villi than the crypts, paralleling Glut2, SI and Dpp4. Slfn3 is a key intracellular regulator of rat enterocytic differentiation. Understanding how Slfn3 works may identify targets to promote enterocytic differentiation and maintain mucosal function in vivo, facilitating enteral nutrition and improving survival in patients with mucosal atrophy or short gut syndrome.  相似文献   

10.
The mouse intestinal epithelium is able to establish and maintain complex lineage-specific, spatial, and temporal patterns of gene expression despite its rapid and continuous renewal. A multipotent stem cell located near the base of each intestinal crypt gives rise to progeny which undergo amplification and allocation to either enterocytic, Paneth cell, goblet cell, or enteroendocrine cell lineages. Differentiation of these four lineages occurs during their geographically ordered migration along the crypt-villus axis. Gut stem cells appear to have a "positional address" which is manifested by differences in the differentiation programs of their lineal descendants along the duodenal-colonic (cephalocaudal) axis. We have used the intestinal fatty acid binding protein gene (Fabpi) as a model to identify cis-acting elements which regulate cell- and region-specific patterns of gene expression in the gut. Nucleotides -1178 to +28 of rat Fabpi direct a pattern of expression of a reporter (human growth hormone [hGH]) which mimics that of mouse Fabpi (a) steady-state levels of hGH mRNA are highest in the distal jejunum of adult transgenic mice and fall progressively toward both the duodenum and the mid-colon; and (b) hGH is confined to the enterocytic lineage and first appears as postmitotic, differentiating cells exit the crypt and migrate to the base of small intestinal villi or their colonic homologs, the surface epithelial cuffs. Nucleotides -103 to +28, which are highly conserved in rat, mouse and human Fabpi, are able to correctly initiate transgene expression in late fetal life, restrict hGH to the enterocytic lineage, and establish an appropriate cephalocaudal gradient of reporter expression. This cephalocaudal gradient is also influenced by cis-acting elements located between nucleotides -1178 and -278, and -277 and -185 that enhance and suppress (respectively) expression in the ileum and colon and by element(s) located upstream of nucleotide -277 that are needed to sustain high levels of hGH production after weaning. Nucleotides -277 to -185 contain part of a domain conserved between the three orthologous Fabpi genes (nucleotides -240 to -159), a 24-bp element (nucleotides -212 to -188) that binds nuclear factors present in colonic but not small intestinal epithelial cells, and a portion of a CCAAT/enhancer binding protein footprint (C/EBP alpha, nucleotides -188 to -167). Removal of nucleotides -277 to -185 (yielding I-FABP-184 to +28/hGH+3) results in inappropriate expression of hGH in proliferating and nonproliferating epithelial cells located in the mid and upper portions of duodenal, jejunal, ileal, and colonic crypts without affecting the "shape" of the cephalocaudal gradient of transgene expression.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
The epithelium of the small intestine is composed of a single layer of cells that line two functionally distinct compartments, the villi that project into the lumen of the gut and the crypts that descend into the underlying connective tissue. Stem cells are located in crypts, where they divide and give rise to transit-amplifying cells that differentiate into secretory and absorptive epithelial cells. Most differentiated cells travel upwards from the crypt towards the villus tip, where they shed into the lumen. While some of these cell behaviors are an intrinsic property of the epithelium, it is becoming evident that tight coordination between the epithelium and the underlying fibroblasts plays a critical role in tissue morphogenesis, stem-cell niche maintenance and regionalized gene expression along the crypt-villus axis. Here, we will review the current literature describing the interaction between epithelium and fibroblasts during crypt-villus axis development and intestinal epithelium renewal during homeostasis.  相似文献   

12.
In the small intestine, the expression of the apolipoprotein (apo) C-III and A-IV genes is restricted to the enterocytes of the villi. We have previously shown that, in transgenic mice, specific expression of the human apo C-III requires a hormone-responsive element (HRE) located in the distal region of the human apoA-IV promoter. This HRE binds the hepatic nuclear factors (HNF)-4alpha and gamma. Here, intraduodenal injections in mice and infections of human enterocytic Caco-2/TC7 cells with an adenovirus expressing a dominant-negative form of HNF-4alpha repress the expression of the apoA-IV gene, demonstrating that HNF-4 controls the apoA-IV gene expression in enterocytes. We show that HNF-4alpha and gamma functionally interact with a second HRE present in the proximal region of the human apoA-IV promoter. New sets of transgenic mice expressing mutated forms of the promoter, combined with the human apo C-III enhancer, demonstrate that, whereas a single HRE is sufficient to reproduce the physiological cephalo-caudal gradient of apoA-IV gene expression, both HREs are required for expression that is restricted to villi. The combination of multiple HREs may specifically recruit regulatory complexes associating HNF-4 and either coactivators in villi or corepressors in crypts.  相似文献   

13.
Anoikis, i.e. apoptosis induced by detachment from the extracellular matrix, is thought to be involved in the shedding of enterocytes at the tip of intestinal villi. Mechanisms controlling enterocyte survival are poorly understood. We investigated the role of E-cadherin, a key protein of cell-cell adhesion, in the control of anoikis of normal intestinal epithelial cells, by detaching murine villus epithelial cells from the underlying basement membrane while preserving cell-cell interactions. We show that upon the loss of anchorage, normal enterocytes execute a program of apoptosis within minutes, via a Bcl-2-regulated and caspase-9-dependent pathway. E-cadherin is lost early from cell-cell contacts. This process precedes the execution phase of detachment-induced apoptosis as it is only weakly modulated by Bcl-2 overexpression or caspase inhibition. E-cadherin loss, however, is efficiently prevented by lysosome and proteasome inhibitors. We also found that a blocking anti-E-cadherin antibody increases the rate of anoikis, whereas the activation of E-cadherin using E-cadherin-Fc chimera proteins reduces anoikis. In conclusion, our results stress the striking sensitivity of normal enterocytes to the loss of anchorage and the contribution of E-cadherin to the control of their survival/apoptosis balance. They open new perspectives on the key role of this protein, which is dysregulated in the intestinal epithelium in both inflammatory bowel disease and cancer.  相似文献   

14.
A technique is described allowing microelectrode impalement of enterocytes located at known positions along intestinal villi from rabbits and hamsters. Using this technique a 5 mV hyperpolarization in membrane potential is shown to occur as enterocytes migrate over the basal third of intestinal villi. The villus structure of the hamster ileum is similar to the rabbit, but the enterocyte lifespan in these two tissues differs considerably (enterocyte migration rates of 17.6 and 6.3 microns hr-1 for hamster and rabbit respectively). A correlation was found between the position an enterocyte occupied on the crypt-villus axis and the developmental state of the membrane potential. No such correlation existed when making comparisons on a time basis. These results are discussed both in terms of what is now known concerning different aspects of enterocyte development and in relation to what type of control mechanism might be generally responsible for initiating differentiation in this tissue.  相似文献   

15.
The assembly of the intestinal microvillus cytoskeleton was examined during the differentiation of enterocytes along the crypt-villus axis in adult chicken duodenum using light and electron microscopic immunolocalization techniques. Using antibodies reactive with villin, fimbrin, and the heavy chain (hc) of brush border (BB) myosin I (110K-calmodulin complex) and rhodamine-conjugated phalloidin as a probe for F-actin, we determined that while actin, villin, and fimbrin were all localized apically along the entire axis, BB myosin I (hc) did not assume this localization until the crypt-villus transition zone. In addition to their localization at the BB surface, all four proteins were present at significant levels along the lateral margins of enterocytes along the entire crypt-villus axis, suggesting that these proteins may be involved in the organization and function of the basolateral membrane cytoskeleton as well. The pattern of expression of the microvillar core proteins along the crypt-villus axis in the adult was comparable to that seen in the intestine of the late stage chicken embryo and suggests that a common program for brush border assembly may be used in both modes of enterocyte differentiation.  相似文献   

16.
Microfold (M) cells in the follicle-associated epithelium (FAE) of Peyer's patches have an important role in mucosal immune responses. A primary difficulty for investigations of bovine M cells is the lack of a specific molecular marker. To identify such a marker, we investigated the expression of several kinds of intermediate filament proteins using calf Peyer's patches. The expression patterns of cytokeratin (CK) 18 in jejunal and ileal FAE were very similar to the localization pattern of M cells recognized by scanning electron microscopy. Mirror sections revealed that jejunal CK18-positive cells had irregular and sparse microvilli, as well as pocket-like structures containing lymphocytes, typical morphological characteristic of M cells. However, CK18-negative cells had regular and dense microvilli on their surface, typical of the morphology of enterocytes. In contrast, CK20 immunoreactivity was detected in almost all villous epithelial cells and CK18-negative cells in the FAE. CK18-positive proliferating transit-amplifying cells in the crypt exchanged CK18 for CK20 above the mouth of the crypt and after moving to the villi; however, CK18-positive M cells in the crypt continued their expression of CK18 during movement to the FAE region. Terminal deoxynucleotidyl-transferase-mediated deoxyuridine-triphosphate-biotin nick-end labeling-positive apoptotic cells were specifically detected at the apical region of villi and FAE in the jejunum and ileum, and all were also stained for CK20. These data indicate that CK18 may be a molecular marker for bovine M cells in FAE and that M cells may transdifferentiate to CK20-positive enterocytes and die by apoptosis in the apex of the FAE.  相似文献   

17.
18.
To study the apoptosis and its mechanism at the fetal-maternal interface of early gestation, localization of apoptotic cells in the implantation sites of the rhesus monkey on day 17, 19, 28 and 34 of pregnancy were first examine by using the TUNEL technique. The expression of Ki67, a molecular marker of proliferating cells, and two apoptotic proteins, B cell lymphoma/leukaemia-2 (Bcl-2) and P53, were then studied by immunohistochemistry. Apoptotic nuclei were observed mainly in the syncytiotrophoblast. Ki67 was confined almost exclusively to cytotrophoblasts. The localization of Bcl-2 protein follows that of the apoptotic nuclei and its expression level increased as the development of the placenta progressed on. P53 was detected to some extent in cytotrophoblasts and syncytiotrophoblast covering the basal feet of the anchoring villi during the late stage of placentation. Based on these observations, it might be suggested that Bcl-2 could be possible to play an interesting role in limiting degree of nuclear degradation and sustaining cell suvival in the multi-nucleated syncytiotrophoblast cells during early pregnancy, and P53 could also be essential in regulating the trophoblastic homeostasis by controlling its proliferation or apoptosis.  相似文献   

19.
Recent findings indicate that enhanced glucose uptake protects enterocytes from excessive apoptosis and barrier defects induced by LPS exposure. The aim of this study was to characterize the mechanisms responsible for increased sodium-dependent glucose cotransporter (SGLT)-1 activity in enterocytes challenged with LPS. SGLT-1-transfected Caco-2 cells were incubated with LPS in high glucose media. LPS increased SGLT-1 activity in dose- and time-dependent fashion, and is due to increased V(max) of the cotransporter. Elevated apical expression of SGLT-1 was also demonstrated. This LPS-induced effect was colchicine-inhibitable, suggesting microtubule-dependent translocation of SGLT-1 onto apical surface. Immunofluorescence staining showed expression of CD14 on the apical surface, but no TLR-4, on these cells. Neutralizing anti-CD14 decreased the LPS-induced upregulation of SGLT-1 activity, whereas anti-TLR-4 had no effect. Pharmacological studies indicated that signaling for LPS-mediated SGLT-1 glucose uptake depends on caspase-8 and -9 activation, but occurs independently of caspase-3. The findings describe a novel feedback mechanism within the apoptotic signaling pathway for SGLT-1-dependent cytoprotection. The observation suggests a new function for CD14 on enterocytes, involving the induction of the caspase-dependent SGLT-1 activity, which ultimately leads to cell rescue. The understanding of these signaling events may shed light on enterocytic cytoprotection and homeostasis mechanism upon pro-apoptotic challenges.  相似文献   

20.
The mouse small intestinal epithelium undergoes continuous renewal throughout life. Previous studies suggest that differentiation of this epithelium is regulated by instructions that are received as cells migrate along crypt-villus units. The nature of the instructions and their intracellular processing remain largely undefined. In this report, we have used genetic mosaic analysis to examine the role of Rac1 GTPase-mediated signaling in controlling differentiation. A constitutively active mutation (Rac1Leu61) or a dominant negative mutation (Rac1Asn17) was expressed in the 129/Sv embryonic stem cell-derived component of the small intestine of C57Bl/6-ROSA26<->129/Sv mice. Rac1Leu61 induces precocious differentiation of members of the Paneth cell and enterocytic lineages in the proliferative compartment of the fetal gut, without suppressing cell division. Forced expression of the dominant negative mutation inhibits epithelial differentiation, without affecting cell division, and slows enterocytic migration along crypt-villus units. The effects produced by Rac1Leu61 or Rac1Asn17 in the 129/Sv epithelium do not spread to adjacent normal C57Bl/6 epithelial cells. These results provide in vivo evidence that Rac1 is involved in the import and intracellular processing of signals that control differentiation of a mammalian epithelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号