首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The rRNA N-glycosidase activities of the catalytically active A chains of the heterodimeric ribosome inactivating proteins (RIPs) ricin and abrin, the single-chain RIPs dianthin 30, dianthin 32, and the leaf and seed forms of pokeweed antiviral protein (PAP) were assayed on E. coli ribosomes. All of the single-chain RIPs were active on E. coli ribosomes as judged by the release of a 243 nucleotide fragment from the 3′ end of 23S rRNA following aniline treatment of the RNA. In contrast, E. coli ribosomes were refractory to the A chains of ricin and abrin. The position of the modification of 23S rRNA by dianthin 32 was determined by primer extension and found to be A2660, which lies in a sequence that is highly conserved in all species.  相似文献   

2.
The rRNA depurination activities of five ribosome-inactivating proteins (RIPs) were compared in vitro using yeast and tobacco leaf ribosomes as substrates. All of the RIPs (pokeweed antiviral protein (PAP), dianthin 32, tritin, barley RIP and ricin A-chain) were active on yeast ribosomes. PAP and dianthin 32 were highly active and ricin A-chain weakly active on tobacco ribosomes, whereas tritin and barley RIP were inactive. PAP and dianthin 32 were highly effective in inhibiting the formation of local lesions caused by tobacco mosaic virus (TMV) on tobacco leaves, whereas tritin, barley RIP and ricin A-chain were ineffective. The apparent anomaly between the in vitro rRNA depurination activity, but lack of antiviral activity of ricin A-chain was further investigated by assaying for rRNA depurination in situ following the topical application of the RIP to leaves. No activity was detected, a finding consistent with the apparent lack of antiviral activity of this RIP. Thus, it is concluded that there is a positive correlation between RIP-catalysed depurination of tobacco ribosomes and antiviral activity which gives strong support to the hypothesis that the antiviral activity of RIPs works through ribosome inactivation.  相似文献   

3.
The ability of dianthin 30 and 32 to inhibit translation in reticulocyte lysates and wheat germ extracts has been studied. The dianthins, like the A chains of the toxins abrin and ricin, inhibited protein synthesis in reticulocyte lysates by inactivating the 60S ribosomal subunit. They also inhibited, at concentrations of 10 ng/ml, a protein-synthesizing system from wheat germ and inactivated isolated wheat germ ribosomes. The concentration of the dianthins in different tissues of the plant was determined by rocket immunoelectrophoresis and by the dianthin's ability to inhibit protein synthesis. Dianthin 32 was found only in the leaves and in growing shoots, while dianthin 30 was present throughout the plant. In the older parts of the plant, the dianthins constituted between 1 and 3% of the total extractable protein whereas much less was found in the younger parts.  相似文献   

4.
Ribosome inactivating proteins (RIPs) are plant proteins with enzymatic activity identified as rRNA N-glycosidase (EC 3.2.2.22), which cleaves the N-glycosidic bond of a specific adenine on the ricin/sarcin region of rRNA, thus causing inhibition of protein synthesis. They also depurinate extensively DNA and other polynucleotides. The three-dimensional structure of dianthin 30, a type 1 (single-chain) RIP of Dianthus caryophyllus (leaves), is now described at 1.4 angstroms, a resolution never achieved before for any RIP. The fold typical of RIPs is conserved, despite some differences in the loop regions. The general structure comparison by superimposed alpha-carbon (249 atoms) and the sequence alignment by structure for dianthin 30 and saporin-S6 give a root mean square deviation of 0.625 angstroms. Despite the differences reported for the biological activities of the two RIPs, their structures fit quite well and both show a protein segment containing strands beta7, beta8, and beta9 shorter than other RIPs. However, the surface electrostatic potential in the active site region neatly distinguishes dianthin 30 from saporin-S6. The possible relationship between the charge distribution and the behavior of the proteins toward different substrates is discussed.  相似文献   

5.
The effect of ribosome-inactivating proteins type 1 (single-chain) and type 2 (two-chain, toxins) on polyphenylalanine polymerization by Tetrahymena pyriformis and Acanthamoeba castellanii ribosomes has been studied. The reaction catalysed by tetrahymena ribosomes was inhibited by two ribosome-inactivating proteins type 1 (dianthin 32 and, less effectively, momordin) whereas the reaction catalysed by amoeba ribosomes was inhibited, in a decreasing order of activity, by three ribosome-inactivating proteins type 1 (dianthin 32, saporin 6 and bryodin) and by two toxins (abrin and volkensin).  相似文献   

6.
New single-chain (type 1) ribosome-inactivating proteins (RIPs) were isolated from the seeds of Basella rubra L. (two proteins) and from the leaves of Bougainvillea spectabilis Willd. (one protein). These RIPs inhibit protein synthesis both in a cell-free system, with an IC50 (concentration causing 50% inhibition) in the 10−10 M range, and by various cell lines, with IC50s in the 10−8–10−6 M range. All three RIPs released adenine not only from rat liver ribosomes but also from Escherichia coli rRNA, polyadenylic acid, herring sperm DNA, and artichoke mottled crinkle virus (AMCV) genomic RNA, thus being polynucleotide:adenosine glycosidases. The proteins from Basella rubra had toxicity to mice similar to that of most type 1 RIPs (Barbieri et al., 1993, Biochim Biophys Acta 1154: 237–282) with an LD50 (concentration that is 50% lethal) ≤ 8 mg · kg−1 body weight, whilst the RIP from Bougainvillea spectabilis had an LD50 >32 mg · kg−1. The N-terminal sequence of the two RIPs from Basella rubra had 80–93% identity, whereas it differed from the sequence of the RIP from Bougainvillea spectabilis. When tested with antibodies against various RIPs, the RIPs from Basella gave some cross-reactivity with sera against dianthin 32, and weak cross-reactivity with momordin I and momorcochin-S, whilst the RIP from Bougainvillea did not cross-react with any antiserum tested. An RIP from Basella rubra and one from Bougainvillea spectabilis were tested for antiviral activity, and both inhibited infection of Nicotiana benthamiana by AMCV. Received: 5 March 1997 / Accepted: 27 May 1997  相似文献   

7.
The effect of abrin and ricin on protein synthesizing systems from different sources was studied. The protein synthesis in a cell-free system from rabbit reticulocytes and from rat liver was strongly inhibited by the toxins, whereas a system from E. coli was not affected. Separate treatments of ribosomes and postribosomal supernatant from a rabbit reticulocyte lysate showed that the site of action of the toxins is on the ribosomes. The inactivation of the rabbit reticulocyte lysate by the toxins was a function of the incubation time and temperature. Protein synthesis was not necessary for the toxins to exert their effect. The data indicate that abrin and ricin act only on the eucaryotic type of ribosomes, and that they exert their effect by enzymatic action.  相似文献   

8.
9.
In order to isolate a cDNA clone of ribosome inactivating protein (RIP), a cDNA library was constructed in Uni-ZAP XL vector with poly(A) RNA purified from leaves of Amaranthus viridis. To get the probe for screening the library, PCR of phage DNA was conducted using the vector primer and degenerate primer designed from a conserved putative active site of the RIPs. Twenty-six cDNA clones from about 600,000 plaques were isolated, and one of these clones was fully sequenced. It was 1,047 bp and contained an open reading frame encoding 270 amino acids. The deduced amino acid sequence had a putative signal sequence of 17 amino acids and a putative active site (AIQMVAEAARFFKYIE) conserved in other RIPs. E. coli cells expressing A. viridis RIP cDNA did not grow well as compared to control cells, indicating that recombinant A. viridis RIP presumably inactivated E. coli ribosomes. In addition, recombinant A. viridis RIP cDNA produced by E. coli had translation inhibition activity in vitro.  相似文献   

10.
The accessibility of the 5'-end region of 16S rRNA (A8GAGUUUG15) inEscherichia coli ribosomes for complementary binding with the synthetic octanucleotide d(CAAACTCT) has been studied. Nonequilibrium gel-filtration was used to evaluate parameters of the binding of this oligonucleotide with free 16S rRNA, ribosomal subunits, and 70S ribosomes. A simple approach is presented to calculate the apparent association constants and the number of binding sites based upon the data obtained under those conditions. Free 16S rRNA, 30S subunits, and 70S ribosomes were found to form rather stable complexes with the octanucleotide, the association constants being similar in all three cases. These data strongly suggest the surface location of the 16S rRNA 5'-end inE. coli ribosomes.  相似文献   

11.
Ribosome-inactivating proteins (RIPs) are plant proteins with enzymatic activity, classified as type 1 (single chain) or type 2 (two chains). They are identified as rRNA N-glycosidases (EC 3.2.2.22) and cause an irreversible inhibition of protein synthesis. Among type 2 RIPs, there are potent toxins (ricin is the best known) that are considered as potential biological weapons. The development of a fast and sensitive method for the detection of biological agents is an important tool to prevent or deal with the consequences of intoxication. In this article, we describe a very sensitive immuno-polymerase chain reaction (IPCR) assay for the detection of RIPs-a type 1 RIP (dianthin) and a type 2 RIP (ricin)-that combines the specificity of immunological analysis with the exponential amplification of PCR. The limit of detection (LOD) of the technique was compared with the LODs of the conventional immunological methods enzyme-linked immunosorbent assay (ELISA) and fluorescent immunosorbent assay (FIA). The LOD of IPCR was more than 1 million times lower than that of ELISA, allowing the detection of 10 fg/ml of dianthin and ricin. The possibility to detect ricin in human serum was also investigated, and a similar sensitivity was observed (10 fg/ml). IPCR appears to be the most sensitive method for the detection of ricin and other RIPs.  相似文献   

12.
Distinct forms of ribosome-inactivating proteins were purified from wheat (Triticum aestivum L.) germ and leaves and termed tritin-S and tritin-L, respectively. These differ in size and charge and are antigenically unrelated. They are both RNA N-glycosidases which act on 26S rRNA in native yeast (Saccharomyces cerevisiae) ribosomes by the removal of A3024 located in a universally conserved sequence in domain VII which has previously been identified as the site of action of ricin A-chain. Tritin-S and tritin-L differ in both their ribosome substrate specificities and cofactor requirements. Tritin-S shows only barely detectable activity on ribosomes from the endosperm, its tissue of synthesis, whereas tritin-L is highly active on leaf ribosomes. Additionally, tritin-S is inactive on wheat germ, tobacco leaf and Escherichia coli ribosomes but active on rabbit reticulocyte and yeast ribosomes. Tritin-L is active on ribosomes from all of the above sources. Tritin-S, unlike tritin-L shows a marked requirement for ATP in its action.Abbreviations CM carboxymethyl - FPLC fast protein liquid chromatography - NEPHGE non-equilibrium pH gradient gel electrophoresis - PAP pokeweed antiviral protein - RIP ribosome-inactivating protein A.J.M. was the recipient of a U.K. Science and Engineering Research Council CASE studentship sponsored by Agricultural Genetics Company Ltd., Cambridge CB4 4GG, UK.  相似文献   

13.
Two new N-glycosidase type-1 ribosome-inactivating proteins (RIPs), denoted petroglaucin 1 and petrograndin, respectively, were isolated from the plantsPetrocoptis glaucifolia (Lag.) Boiss sp.viscosa (Rothm.) Laínz andPetrocoptis grandiflora Rothm. These new RIPs do not share H2N-terminal amino-acid sequence homology with petroglaucin (now denoted as petroglaucin 2), the only other type-1 RIP to be isolated fromP. glaucifolia (Arias et al. (1992) Planta186, 532–540). Petroglaucin 1 shares amino-acid sequence homology with RIPs from Cucurbitaceae while petroglaucin 2 and petrograndin do so with saporins and dianthin 30 (Caryophyllaceae). The new RIPs strongly inhibited protein synthesis at subnanomolar concentrations in rabbit reticulocyte lysates and other eukaryotic cell-free systems, but they were inactive on bacterial ribosomes.  相似文献   

14.
The direct assays on Biacore with immobilised RRF and purified L11 from E. coli in the flow trough have shown unspecific binding between the both proteins. The interaction of RRF with GTPase domain of E. coli ribosomes, a functionally active complex of L11 with 23S r RNA and L10.(L7/L12)4 was studied by Biacore. In the experiments of binding of RRF with 30S, 50S and 70S ribosomes from E. coli were used the antibiotics thiostrepton, tetracycline and neomycin and factors, influencing the 70S dissociation Mg2+, NH4Cl, EDTA. The binding is strongly dependent from the concentrations of RRF, Mg2+, NH4Cl, EDTA and is inhibited by thiostrepton. The effect is most specific for 50S subunits and indicates that the GTPase centre can be considered as a possible site of interaction of RRF with the ribosome. We can consider an electrostatic character of the interactions with most probable candidate 16S and 23S r RNA at the interface of 30S and 50S ribosomal subunits.  相似文献   

15.
Ribosome inactivating proteins (RIPs) inhibit protein synthesis depurinating a conserved residue in the sarcin/ricin loop of ribosomes. Some RIPs are only active against eukaryotic ribosomes, but other RIPs inactivate with similar efficiency prokaryotic and eukaryotic ribosomes, suggesting that different RIPs would interact with different proteins. The SRL in Trypanosoma cruzi ribosomes is located on a 178b RNA molecule named 28Sδ. In addition, T. cruzi ribosomes are remarkably resistant to TCS. In spite of these peculiarities, we show that TCS specifically depurinate the predicted A51 residue on 28Sδ. We also demonstrated that the C-terminal end of ribosomal P proteins is needed for full activity of the toxin. In contrast to TCS, PAP inactivated efficiently T.cruzi ribosomes, and most importantly, does not require from the C-terminal end of P proteins. These results could explain, at least partially, the different selectivity of these toxins against prokaryotic and eukaryotic ribosomes.  相似文献   

16.
The mechanism of protein synthesis inhibition by the toxic lectins, abrin and ricin, has been studied in crude and in purified cell-free systems from rabbit reticulocytes and Krebs II ascites cells. In crude systems abrin and ricin strongly inhibited protein synthesis from added aminoacyl-tRNA, demonstrating that the toxins act at some point after the charging of tRNA. Supernatant factors and polysomes washed free of elongation factors were treated separately with the toxins and then neutralizing amounts of anti-toxins were added. Recombination experiments between toxin-treated ribosomes and untreated supernatant factors and vice versa showed that the toxin-treated ribosomes had lost most of their ability to support polyphenylalanine synthesis, whereas treatment of the supernatant factors with the toxins did not inhibit polypeptide synthesis. Recombination experiments between toxin-treated isolated 40-S subunits and untreated 60-S subunits and vice versa showed that only when the 60-S subunits had been treated with the toxins was protein synthesis inhibited in the reconstituted system. The incorporation of [3H]puromycin into nascent peptide chains was unaffected by the toxins, indicating that the peptidyl transferase is not inhibited. Both the EF-1-catalyzed and the EF-2-catalyzed ability of the ribosomes to hydrolyze [gamma-32P]GTP was inhibited by abrin and ricin. An 8-S complex released from the 60-S subunit by EDTA treatment possessed both GTPase and ATPase activity, while the particle remaining after the EDTA treatment had lost most of its GTPase activity. Both enzyme activities of the 8-S complex were inhibited by abrin and ricin. The present data indicate that there is a common site on the 60-S subunits for EF-1- and EF-2- stimulated GTPase activity and they suggest that abrin and ricin inhibit protein synthesis by modifying this site.  相似文献   

17.
alpha-Sarcin from Aspergillus giganteus and the ribosome-inactivating proteins (RIPs) from higher plants inactivate the 60 S ribosomal subunit. The former is an RNAase, whereas RIPs are N-glycosidases. The site of cleavage of RNA and that of N-glycosidic depurinization are at one nucleotide distance in 28 S rRNA [Endo & Tsurugi (1987) J. Biol. Chem. 262, 8128-8130]. The effect of alpha-sarcin and that of RIPs on the interaction of elongation factors with Artemia salina (brine shrimp) ribosomes have been investigated. alpha-Sarcin inhibits both the EF1 (elongation factor 1)-dependent binding of aminoacyl-tRNA and the GTP-dependent binding of EF2 (elongation factor 2) to ribosomes, whereas two of the RIPs tested, ricin from Ricinus communis (castor bean) and volkensin from Adenia volkensii (kilyambiti), inhibit only the latter reaction. EF2 protects ribosomes from inactivation by both alpha-sarcin and ricin. The EF1-binding site is affected only by alpha-sarcin. The sensitivity of this site to alpha-sarcin is increased by pretreatment of ribosomes with ricin. A. salina ribosomes were highly resistant to the third RIP tested, namely gelonin from Gelonium multiflorum. All four proteins tested have, however, a comparable activity on the rabbit reticulocyte-lysate system.  相似文献   

18.
An active cell-free translation system was prepared from Brevibacterium lactofermentum, a Gram-positive bacteria used in molecular cloning and protein expression. The system contained high speed postribosomal supernatant (S 370), purified ribosomes and a tRNA mixture from Escherichia coli, and synthesized polyuridylic acid-directed polyphenylalanine once optimized for mono and divalent ions, time, and temperature. The translation system was evaluated for sensitivity to several translational inhibitors including several N-glycosidase ribosome-inactivating proteins (RIPs) isolated from plants. The pattern of inhibition by RIPs resembled that observed recently for Gram-negative bacteria such as Escherichia coli and Agrohacterium tumefaciens [Girbés et al., J. Bacteriol., 175, 6721–6724 (1993)]. A typical inhibitory type 1 RIP such as crotin 2 promoted depurination of the rRNA, which upon treatment with acid aniline released a fragment of approximately 230 nucleotides. On these grounds, we propose that bacterial ribosome sensitivity to plant RIPs depends on the bacterial ribosome-specific presence of protein recognition domains in the RIP present only in some RIP but not in others.  相似文献   

19.
Members of the type 2 ribosome-inactivating proteins (RIPs) family (e.g. ricin, abrin) are potent cytotoxins showing a strong lethal activity toward eukaryotic cells. Type 2 RIPs contain two polypeptide chains (usually named A, for "activity", and B, for "binding") linked by a disulfide bond. The intoxication of the cell is a consequence of a reductive process in which the toxic domain is cleaved from the binding domain by oxidoreductases located in the lumen of the endoplasmic reticulum (ER). The best known example of type 2 RIPs is ricin. Protein disulfide isomerase (PDI) was demonstrated to be involved in the process of ricin reduction; however, when PDI is depleted from cell fraction preparations ricin reduction can still take place, indicating that also other oxidoreductases might be implicated in this process. We have investigated the role of TMX, a transmembrane thioredoxin-related protein member of the PDI family, in the cell intoxication operated by type 2 RIPs ricin and abrin. Overexpressing TMX in A549 cells resulted in a dramatic increase of ricin or abrin cytotoxicity compared with control mock-treated cells. Conversely, no difference in cytotoxicity was observed after treatment of A549 cells or control cells with saporin or Pseudomonas exotoxin A whose intracellular mechanism of activation is not dependent upon reduction (saporin) or only partially dependent upon it (Pseudomonas exotoxin A). Moreover, the silencing of TMX in the prostatic cell line DU145 reduced the sensitivity of the cells to ricin intoxication further confirming a role for this enzyme in intracellular ricin activation.  相似文献   

20.
The ribosome and tRNA levels of Escherichia coli cells, transformed with a native or mutated Vitreoscilla hemoglobin genes (vhb), were investigated using asymmetrical flow field-flow fractionation (AFFFF). Mutagenesis of vhb by error-prone PCR was carried out to alter the growth behavior of microaerobically cultivated native VHb-expressing E. coli. A VHb mutant, pVMT1, was identified, which was able to reach a remarkably high final A600 of 15, the value of which being 160% higher than that of a VHb control carrying pVHb8 (A600 5.8). AFFFF revealed that cells expressing mutant vhbs showed up to a doubling in the number of active 70S ribosomes cell–1, an almost 3-fold increase in the number of tRNAs cell–1, and up to a 26% increase in the mass fraction of active 70S ribosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号