首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Monoaminergic synaptosomes have been isolated and purified from rat brain by immunomagnetophoresis. This novel technique uses magnetic beads to which Protein A is bound. Noradrenergic, dopaminergic, and serotonergic synaptosomes (previously cell-surface labelled with anti-dopamine-beta-hydroxylase, anti-tyrosine hydroxylase, and anti-tryptophan hydroxylase, respectively) may be isolated in a highly purified state. The synaptosomal subpopulations are recovered in a viable metabolic state and show glucose-stimulated respiration and Ca2(+)-dependent neurotransmitter release. A novel subtype of dopamine-beta-hydroxylase was found in dopaminergic terminals. No evidence for glutamate corelease from monoaminergic synaptosomes was obtained.  相似文献   

2.
Two of the tree toxic compounds used in this work, veratridine and the sea anemone toxin, provoke neurotransmitter release from synaptosomes; the third one, tetrodotoxin, prevents the action of both veratridine and the sea anemone toxin. The half-maximum effects of veratridine and sea anemone toxin actions on synaptosomes are K0.5 = 10 and 0.02 micronM, respectively. Although veratridine and the sea anemone toxin similarly provoke neurotransmitter release, they act on different receptor structures in the membrane. Tetrodotoxin antagonizes the effects of both veratridine and the sea anemone toxin. The half-maximum inhibitory concentration of tetrodotoxin is K0.5 = 4 nM for veratridine and 7.9 nM for ATXII. It is very similar to the dissociation constant measured from direct binding experiments with the radioactive toxin. The analysis of this antagonistic action offers an easy in vitro assay for tetrodotoxin interaction with its receptor.  相似文献   

3.
alpha-latrotoxin, a component of black widow spider venom, binds to presynaptic nerve terminals and stimulates massive neurotransmitter release. Previous studies have demonstrated that alpha-latrotoxin first binds to two high-affinity receptors on nerve terminals, neurexins and CLs (CIRLs and latrophilins), and then executes a critical, second step of unknown nature that stimulates neurotransmitter release. We now demonstrate that incubation of alpha-latrotoxin with synaptosomes at 0 degrees C results in its peripheral membrane association. Incubation at 37 degrees C, however, converts the toxin into an operationally integral membrane protein, and induces generation of a protease-resistant fragment that consists of the entire N-terminal domain of alpha-latrotoxin and becomes protease sensitive after lysis of synaptosomes. Our data suggest that alpha-latrotoxin inserts into the presynaptic plasma membrane after receptor binding, resulting in an intracellular location of the N-terminal sequences. Membrane insertion of the N-terminal domain of alpha-latrotoxin occurs spontaneously, independently of membrane recycling or transmembrane ion gradients. We postulate that alpha-latrotoxin acts intracellularly in triggering release, and propose that non-selective cation channels induced by alpha-latrotoxin may be a by-product of membrane insertion.  相似文献   

4.
Glycerotoxin (GLTx) is capable of stimulating neurotransmitter release at the frog neuromuscular junction by directly interacting with N-type Ca2+ (Cav2.2) channels. Here we have utilized GLTx as a tool to investigate the functionality of Cav2.2 channels in various mammalian neuronal preparations. We first adapted a fluorescent-based high-throughput assay to monitor glutamate release from rat cortical synaptosomes. GLTx potently stimulates glutamate secretion and Ca2+ influx in synaptosomes with an EC50 of 50 pm. Both these effects were prevented using selective Cav2.2 channel blockers suggesting the functional involvement of Cav2.2 channels in mediating glutamate release in this system. We further show that both Cav2.1 (P/Q-type) and Cav2.2 channels contribute equally to depolarization-induced glutamate release. We then investigated the functionality of Cav2.2 channels at the neonatal rat neuromuscular junction. GLTx enhances both spontaneous and evoked neurotransmitter release causing a significant increase in the frequency of postsynaptic action potentials. These effects were blocked by specific Cav2.2 channel blockers demonstrating that either GLTx or its derivatives could be used to selectively enhance the neurotransmitter release from Cav2.2-expressing mammalian neurons.  相似文献   

5.
Phospholipase A2 added directly to superfused [3H]norepinephrine-labeled synaptosomes could cause the release of neurotransmitter molecules. Chloroquine and quinacrine, which block the action of phospholipase A2, inhibited either the phospholipase A2-stimulated or the high potassium-stimulated release of [3H]norepinephrine from synaptosomes. Only quinacrine blocked the high potassium-stimulated influx of Ca2+. It appears that during stimulation of synaptosomes, Ca2+ influx leads to the activation of phospholipase A2, which in turn, hydrolyzes membrane phospholipids in situ. The formation of lysophospholipids may alter the microenvironment and the physicochemical properties of membranes, resulting in the release of neurotransmitter through exocytosis.  相似文献   

6.
The subcellular localization of vasopressin (VP) from extra-hypothalamic areas of rat brain was investigated by measuring its distribution (a) along a continuous sucrose gradient; (b) during the preparation of isolated nerve endings (synaptosomes) and (c) during the preparation of synaptic vesicles.Quite large amounts of vasopressin are isolated in the same fractions as mitochondria, as well as synaptosomes. Osmotic rupture of membrane bound organelles in the homogenate results in the vasopressin being measured largely in the fraction containing synaptic vesicles. These results would suggest that vasopressin could be released by nerve terminals which is consistent with the hypothesis that it may have a neurotransmitter/neuromodulator function in the CNS.  相似文献   

7.
The effects of iron-dependent peroxidation on respiration and neurotransmitter transport of brain nerve endings has been studied. Rat brain synaptosomes were peroxidized by exposure to an ADP-Fe/ascorbate system and the protective effect of added Se, Cd, or Zn was investigated with regard to dopamine and gamma-aminobutyric acid (GABA) transport. Peroxidation impaired the respiration of synaptosomes by about 20% and caused a marked increase in dopamine uptake; but in contrast, peroxidation induced a large decrease in synaptosomal uptake of GABA. The increased dopamine transport into synaptosomes was partially prevented by the presence of Zn, Se, or Cd. The presence of Zn, Cd, or Se, in order of decreasing effectiveness, also slowed down ADP-Fe/ascorbate mediated peroxidation of synaptosomes. Peroxidation caused a significant inhibition of veratridine-dependent release of both dopamine and GABA from synaptosomes, but the KCl-dependent release of these neurotransmitters was not effected by peroxidation. These results implicate that peroxidation damage of nerve endings may lead to large changes in neurotransmitter transport thus resulting in an alteration in the function of the central nervous system.  相似文献   

8.
We have directly observed the effects of activating presynaptic D1-like and D2-like dopamine receptors on Ca2+ levels in isolated nerve terminals (synaptosomes) from rat striatum. R-(+)-SKF81297, a selective D1-like receptor agonist, and (-)-quinpirole, a selective D2-like receptor agonist, induced increases in Ca2+ levels in different subsets of individual striatal synaptosomes. The SKF81297- and quinpirole-induced effects were blocked by R-(+)-SCH23390, a D1-like receptor antagonist, and (-)-sulpiride, a D2-like receptor antagonist, respectively. SKF81297- or quinpirole-induced Ca2+ increases were inhibited following blockade of voltage-gated calcium channels or sodium channels. In a larger subset of synaptosomes, quinpirole decreased baseline Ca2+. Quinpirole also inhibited veratridine-induced increases in intrasynaptosomal Ca2+ level. Immunostaining confirmed the presynaptic expression of D1, D5, D2 and D3 receptors, but not D4 receptors. The array of neurotransmitter phenotypes of the striatal nerve endings expressing D1, D5, D2 or D3 varied for each receptor subtype. These results suggest that presynaptic D1-like and D2-like receptors induce increases in Ca2+ levels in different subsets of nerve terminals via Na+ channel-mediated membrane depolarization, which, in turn, induces the opening of voltage-gated calcium channels. D2-like receptors also reduce nerve terminal Ca2+ in a different but larger subset of synaptosomes, consistent with the predominant presynaptic action of dopamine in the striatum being inhibitory.  相似文献   

9.
In order to characterize some of the lateralized biochemical events promoted in brain upon massive neurotransmitter release, the labeling of lipids under specific stimulation of the muscarinic acetylcholine receptor (mAChR) has been studied in synaptosomes obtained from right and left cerebral cortex (RCC and LCC respectively). Synaptosomes were incubated with [32P]phosphate in the absence and in the presence of the cholinergic agonist carbamoylcholine and the muscarinic antagonist atropine. Binding of the agonist to the mAChR promoted an enhanced labeling of polyphosphoinositides, such effect being considerably more pronounced in the LCC than in the RCC. The differences observed could be due to a higher mAChR-elicited activity of phospholipase C in the RCC than in the LCC. The results show that mAChR stimulation activates the turnover of inosítol lipids to a different extent in the two hemispheres, indicating either an uneven distribution of the receptor in brain and/or dissimilarities in the degree of coupling of the mAChR with its corresponding transmembrane signaling system in each hemicortex.  相似文献   

10.
11.
Abstract: The uptake of [3H]dopamine was studied in the C cells of chicken ultimobranchial gland (UBG). DA uptake appears to be an active and saturable mechanism (Km= 8.6 μM). The C cells' affinity for DA is intermediate between dopaminergic synaptosomes and such extraneural tissues as platelets and heart. UBG incubation with DA leads to the synthesis of a noticeable quantity of DOPAC, indirectly showing the presence of MAO activity. Thus UBG C cells, besides having both an embryological derivation from the neural crest and some morphological aspects similar to synaptosomes, also possess an active uptake mechanism for a central neurotransmitter.  相似文献   

12.
alpha-Latrotoxin, a presynaptic neurotoxin from the venom of Latrodectus mactans tredecimguttatus, induces massive [3H]GABA release from rat brain synaptosomes as a result of interaction with either Ca(2+)-dependent (neurexin 1 alpha or Ca(2+)-independent (latrophilin) membrane receptor. The main aim of the study was to elucidate whether the binding of alpha-latrotoxin to different types of receptors led to [3H]GABA secretion from one pool or in each case the source of neurotransmitter differs: in the presence of Ca2+ exocytosis is induced, while in the absence of Ca(2+)--outflow by mobile membrane GABA transporter from cytoplasm. We examined the effect of the depletion of cytosolic [3H]GABA pool by competitive inhibitors of the GABA transporter (nipecotic acid and 2,4-diaminobutyric acid) on the alpha-latrotoxin-stimulated neurotransmitter release. We also compared the influence of these agents on neurosecretion, evoked by depolarization with that evoked by alpha-latrotoxin. Depolarization was stimulated by 4-aminopyridine in the Ca(2+)-containing saline and high KCl in Ca(2+)-free medium. In synaptosomes treated with nipecotic acid unstimulated [3H]GABA release was significantly augmented and high KCl-evoked Ca(2+)-independent [3H]GABA release was essentially inhibited. But under the same conditions neurosecretion stimulated by alpha-latrotoxin greatly raised with respect to the control response. The similar results were obtained with the synaptosomes treated with 2,4-diaminobutyric acid. Another way to determine which of GABA pool is the target of alpha-latrotoxin action lay in analysis of the toxin effects on the preliminary depolarized synaptosomes. alpha-Latrotoxin influence was diminished by the preceding depolarization by 4-aminopyridine in Ca2+ presence. But after the high KCl stimulation effect of alpha-latrotoxin didn't change. These data suggest that alpha-latrotoxin triggers neurotransmitter release from synaptic vesicles via exocytosis. We suppose that the type of membrane receptor does not determine the mechanism of GABA release evoked by the toxin.  相似文献   

13.
Brain-derived neurotrophic factor (BDNF) signalling is critical for neuronal development and transmission. Recruitment of TrkB receptors to lipid rafts has been shown to be necessary for the activation of specific signalling pathways and modulation of neurotransmitter release by BDNF. Since TrkB receptors are known to be modulated by adenosine A2A receptor activation, we hypothesized that activation of A2A receptors could influence TrkB receptor localization among different membrane microdomains. We found that adenosine A2A receptor agonists increased the levels of TrkB receptors in the lipid raft fraction of cortical membranes and potentiated BDNF-induced augmentation of phosphorylated TrkB levels in lipid rafts. Blockade of the clathrin-mediated endocytosis with monodansyl cadaverine (100 μM) did not modify the effects of the A2A receptor agonists, but significantly impaired BDNF effects on TrkB recruitment to lipid rafts. The effect of A2A receptor activation in TrkB localization was mimicked by 5 μM forskolin, an adenylyl cyclase activator. Also, it was blocked by the PKA inhibitors Rp-cAMPs and PKI-(14-22) and by the Src-family kinase inhibitor PP2. Moreover, removal of endogenous adenosine or disruption of lipid rafts reduced BDNF stimulatory effects on glutamate release from cortical synaptosomes. Lipid raft integrity was also required for the effects of BDNF upon hippocampal long-term potentiation at CA1 synapses. Our data demonstrate, for the first time, a BDNF-independent recruitment of TrkB receptors to lipid rafts, induced by the activation of adenosine A2A receptors, with functional consequences for TrkB phosphorylation and BDNF-induced modulation of neurotransmitter release and hippocampal plasticity.  相似文献   

14.
The decrease in neurotransmitter amino acid uptake was observed in rat brain synaptosomes incubated with S-adenosyl-L-methyl-methionine. The inhibitory effect of neurotransmitter as a consequence of methylation of synaptic membrane is more pronounced in stimulatory transmitter amino acids. The effect of phospholipids on amino acid uptake in rat brain synaptosomes decreases with age.  相似文献   

15.
The effects of phenothiazine neuropleptics--chlorpromazine, trifluoperazine, fluphenazine and of antidepressants-imipramine and phthoracizine on the GABA-H3 accumulation by synaptosomes of the rat cerebral cortex were studied. All neuroleptics were found to inhibit the process of neurotransmitter uptake by the brain synaptosomes. Antidepressants were less potent. Chlorpromazine had the highest inhibitory effect on GABA uptake and phthoracizine--the lowest. It is suggested that the influence of neurolptics on GABA uptake could play a certain role in the mode of a synaptic action of these drugs.  相似文献   

16.
Cupello  A.  Mainardi  P.  Robello  M.  Thellung  S. 《Neurochemical research》1997,22(12):1517-1521
The effect of nitric oxide donors and L-arginine on the uptake of GABA was studied in synaptosomes purified from rat brain. The neurotransmitter uptake was significantly reduced by S-nitrosoacetylpenicillamine and by sodium nitroprusside, although in this case to a lesser extent. A slight inhibitory effect was found preincubating rat brain synaptosomes with 1 mM L-arginine as well. The S-nitrosoacetylpenicillamine effect gradually disappeared with decomposition of the substance by exposure to light. The nitric oxide effect appears to be mainly due to a decrease in the V for synaptosomal GABA uptake and seems to be related to a partial collapse of nerve endings ionic gradients. Functionally, it could result over time in a reduced availability of GABA at the synapses involved.  相似文献   

17.
Rat Brain Synaptosomes Prepared by Phase Partition   总被引:2,自引:1,他引:1  
Synaptosomes from rat forebrain can easily be isolated by combining centrifugation with partition in an aqueous two-phase system composed of dextran T500 and polyethylene glycol 4000 in which synaptosomes have an extreme affinity for the upper phase. The fraction thus obtained has been characterized by electron microscopy and biochemical markers for synaptosomes and some other cell components. The contamination by microsomes, free mitochondria, and myelin was 4.4, 3.2, and 0.1%, respectively. The morphometric analysis of the electron micrographs shows that greater than 60% of the structures are synaptosomes. This preparation of the isolation procedure is remarkably short (less than 1 h), formance as assayed by their respiratory activities and ATP level in the absence and presence of depolarizing agents. Synaptosomes prepared by phase partition release the neurotransmitter glutamate in a Ca2(+)-dependent manner. The duration of the isolation procedure is remarkably short (less than 1 h), no ultracentrifuge is required, and the method can be applied for small- or large-scale preparations.  相似文献   

18.
A technique has recently been developed for the isolation of synaptosomes by centrifugation through percoll gradients. Utilizing this procedure, striatal synaptosomes were separated into two fractions, termed fractions 3 and 4, by their different sedimentation characteristics in percoll. The aim of this investigation was to determine whether there were any neurotransmitter differences between these fractions. The content of endogenous neurotransmitters dopamine (DA) and serotonin (5-HT) significantly differed between these fractions. Fraction 3 contained greater levels of 5-HT, while fraction 4 was enriched for DA. Both fractions were capable of releasing DA or 5-HT upon K+ depolarization. The results raise the possibility that a relative enrichment of dopaminergic synaptosomes in fraction 4 and of serotonergic synaptosomes in fraction 3 has been achieved.  相似文献   

19.
Synthetic derivatives of phenothiazine have been used for over a century as well-tolerated drugs against a variety of human ailments from psychosis to cancer. This implies a considerable diversity in the mechanisms of action produced by structural changes to the phenothiazine scaffold. For example, chlorpromazine treatment of psychosis is related to its interaction with dopaminergic receptors. On the other hand, antagonistic action of such drugs on cholinergic receptor systems would be counter-productive for treatment of Alzheimer’s disease. In a search for phenothiazines that are inhibitors of cholinesterases, especially butyrylcholinesterase, with potential to treat Alzheimer’s disease, we wished to ascertain that such molecules could be devoid of neurotransmitter receptor interactions. To that end, a number of our synthetic N-10-carbonyl phenothiazine derivatives, with cholinesterase inhibitory activity, were tested for interaction with a variety of neurotransmitter receptor systems. We demonstrate that phenothiazines can be prepared without significant neurotransmitter receptor interactions while retaining high potency as cholinesterase ligands for treatment of Alzheimer’s disease.  相似文献   

20.
Abstract: The dipeptide carnosine (β-alanyl-L-histidine) has been proposed as a neurotransmitter in the mammalian olfactory pathway. Therefore, the efflux of in vivo -synthesized [14C]carnosine from mouse olfactory bulb synaptosomes was investigated. Carnosine was found to be released from the olfactory bulb synaptosomes by two mechanisms. The first is a slow spontaneous process that is independent of depolarization. The rate of this release was doubled in the presence of 1 m M external carnosine. Release by the second mechanism was markedly stimulated in the presence of calcium by depolarization with either 60 m M K+ or 300 μ M veratridine. Omission of calcium abolished the stimulatory effect of both of these agents. Further, blockage of the veratridine-induced depolarization by tetrodotoxin also inhibited carnosine release. These results are consistent with the hypothesis that carnosine acts as a neurotransmitter in the mouse olfactory pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号