首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Hepatitis C virus entry depends on clathrin-mediated endocytosis   总被引:10,自引:0,他引:10       下载免费PDF全文
Due to difficulties in cell culture propagation, the mechanisms of hepatitis C virus (HCV) entry are poorly understood. Here, postbinding cellular mechanisms of HCV entry were studied using both retroviral particles pseudotyped with HCV envelope glycoproteins (HCVpp) and the HCV clone JFH-1 propagated in cell culture (HCVcc). HCVpp entry was measured by quantitative real-time PCR after 3 h of contact with target cells, and HCVcc infection was quantified by immunoblot analysis and immunofluorescence detection of HCV proteins expressed in infected cells. The functional role of clathrin-mediated endocytosis in HCV entry was assessed by small interfering RNA-mediated clathrin heavy chain depletion and with chlorpromazine, an inhibitor of clathrin-coated pit formation at the plasma membrane. In both conditions, HCVpp entry and HCVcc infection were inhibited. HCVcc infection was also inhibited by pretreating target cells with bafilomycin A1 or chloroquine, two drugs known to interfere with endosome acidification. These data indicate that HCV enters target cells by clathrin-mediated endocytosis, followed by a fusion step from within an acidic endosomal compartment.  相似文献   

2.
Simian virus 40 (SV40) is unusual among animal viruses in that it enters cells through caveolae, and the internalized virus accumulates in a smooth endoplasmic reticulum (ER) compartment. Using video-enhanced, dual-colour, live fluorescence microscopy, we show the uptake of individual virus particles in CV-1 cells. After associating with caveolae, SV40 leaves the plasma membrane in small, caveolin-1-containing vesicles. It then enters larger, peripheral organelles with a non-acidic pH. Although rich in caveolin-1, these organelles do not contain markers for endosomes, lysosomes, ER or Golgi, nor do they acquire ligands of clathrin-coated vesicle endocytosis. After several hours in these organelles, SV40 is sorted into tubular, caveolin-free membrane vesicles that move rapidly along microtubules, and is deposited in perinuclear, syntaxin 17-positive, smooth ER organelles. The microtubule-disrupting agent nocodazole inhibits formation and transport of these tubular carriers, and blocks viral infection. Our results demonstrate the existence of a two-step transport pathway from plasma-membrane caveolae, through an intermediate organelle (termed the caveosome), to the ER. This pathway bypasses endosomes and the Golgi complex, and is part of the productive infectious route used by SV40.  相似文献   

3.
In recent years, BK virus (BKV) nephritis after renal transplantation has become a severe problem. The exact mechanisms of BKV cell entry and subsequent intracellular trafficking remain unknown. Since human renal proximal tubular epithelial cells (HRPTEC) represent a main natural target of BKV nephritis, analysis of BKV infection of HRPTEC is necessary to obtain additional insights into BKV biology and to develop novel strategies for the treatment of BKV nephritis. We coincubated HRPTEC with BKV and the cholesterol-depleting agents methyl beta cyclodextrin (MBCD) and nystatin (Nys), drugs inhibiting caveolar endocytosis. The percentage of infected cells (detected by immunofluorescence) and the cellular levels of BKV large T antigen expression (detected by Western blot analysis) were significantly decreased in both MBCD- and Nys-treated HPRTEC compared to the level in HRPTEC incubated with BKV alone. HRPTEC infection by BKV was also tested after small interfering RNA (siRNA)-dependent depletion of either the caveolar structural protein caveolin-1 (Cav-1) or clathrin, the major structural protein of clathrin-coated pits. BKV infection was inhibited in HRPTEC transfected with Cav-1 siRNA but not in HRPTEC transfected with clathrin siRNA. The colocalization of labeled BKV particles with either Cav-1 or clathrin was investigated by using fluorescent microscopy and image cross-correlation spectroscopy. The rate of colocalization of BKV with Cav-1 peaked at 4 h after incubation. Colocalization with clathrin was insignificant at all time points. These results suggest that BKV entered into HRPTEC via caveolae, not clathrin-coated pits, and that BKV is maximally associated with caveolae at 4 h after infection, prior to relocation to a different intracellular compartment.  相似文献   

4.
Entry of wild-type lentivirus equine infectious anemia virus (EIAV) into cells requires a low-pH step. This low-pH constraint implicates endocytosis in EIAV entry. To identify the endocytic pathway involved in EIAV entry, we examined the entry requirements for EIAV into two different cells: equine dermal (ED) cells and primary equine endothelial cells. We investigated the entry mechanism of several strains of EIAV and found that both macrophage-tropic and tissue culture-adapted strains utilize clathrin-coated pits for entry. In contrast, a superinfecting strain of EIAV, EIAVvMA-1c, utilizes two mechanisms of entry. In cells such as ED cells that EIAVvMA-1c is able to superinfect, viral entry is pH independent and appears to be mediated by plasma membrane fusion, whereas in cells where no detectable superinfection occurs, EIAVvMA-1c entry that is low-pH dependent occurs through clathrin-coated pits in a manner similar to wild-type virus. Regardless of the mechanism of entry being utilized, the internalization kinetics of EIAV is rapid with 50% of cell-associated virions internalizing within 60 to 90 min. Cathepsin inhibitors did not prevent EIAV entry, suggesting that the low-pH step required by wild-type EIAV is not required to activate cellular cathepsins.  相似文献   

5.
Cellular mechanisms of bovine viral diarrhea virus (BVDV) entry in MDBK cells were investigated. Chloroquine, bafilomycin A1, or ammonium chloride inhibited BVDV infection, indicating that an acidic endosomal pH is required for BVDV entry. The tyrosine kinase inhibitor genistein partially inhibited BVDV infection at a postentry step, whereas BVDV entry was strongly inhibited by chlorpromazine or by the overexpression of a dominant-negative form of EPS15, a protein essential for the formation of clathrin-coated vesicles at the plasma membrane. Together, these data indicate that BVDV infection requires an active clathrin-dependent endocytic pathway.  相似文献   

6.
7.
Simian virus 40 (SV40) enters cells by atypical endocytosis mediated by caveolae that transports the virus to the endoplasmic reticulum (ER) instead of to the endosomal-lysosomal compartment, which is the usual destination for viruses and other cargo that enter by endocytosis. We show here that SV4O is transported to the ER via an intermediate compartment that contains beta-COP, which is best known as a component of the COPI coatamer complexes that are required for the retrograde retrieval pathway from the Golgi to the ER. Additionally, transport of SV40 to the ER, as well as infection, is sensitive to brefeldin A. This drug acts by specifically inhibiting the ARF1 GTPase, which is known to regulate assembly of COPI coat complexes on Golgi cisternae. Moreover, some beta-COP colocalizes with intracellular caveolin-1, which was previously shown to be present on a new organelle (termed the caveosome) that is an intermediate in the transport of SV40 to the ER (L. Pelkmans, J. Kartenbeck, and A. Helenius, Nat. Cell Biol. 3:473-483, 2001). We also show that the internal SV40 capsid proteins VP2 and VP3 become accessible to immunostaining starting at about 5 h. Most of that immunostaining overlays the ER, with some appearing outside of the ER. In contrast, immunostaining with anti-SV40 antisera remains confined to the ER.  相似文献   

8.
It has been suggested that infectious entry of rubella virus (RV) is conducted by receptor mediated endocytosis. To explore the cellular entry mechanism of RV, inhibitory effects of drugs affecting various endocytic pathways on RV entry into VeroE6 cells were analyzed. Results showed that RV infectious entry into VeroE6 cells is mediated by clathrin-dependent endocytosis and not by caveolae-mediated endocytosis. Moreover, chemical inhibition of macropinocytosis such as treatments of amiloride, actin and microtubule-disrupting drug significantly reduced RV infection. Considering that macropinocytosis is inducible endocytosis by cellular stimulations, clathrin-mediated endocytosis is likely to be a major route of RV infectious entry.  相似文献   

9.
10.
Infection by the coronavirus mouse hepatitis virus strain A59 (MHV-A59) requires the release of the viral genome by fusion with the respective target membrane of the host cell. Fusion is mediated by the viral S protein. Here, the entry pathway of MHV-A59 into murine fibroblast cells was studied by independent approaches. Infection of cells assessed by plaque reduction assay was strongly inhibited by lysosomotropic compounds and substances that interfere with clathrin-dependent endocytosis, suggesting that MHV-A59 is taken up via endocytosis and delivered to acidic endosomal compartments. Infection was only slightly reduced in the presence of substances inhibiting proteases of endosomal compartments, precluding that the endocytic uptake is required to activate the fusion potential of the S protein by its cleavage. Fluorescence confocal microscopy of labeled MHV-A59 confirmed that virus is taken up via endocytosis. Bright labeling of intracellular compartments suggests their fusion with the viral envelope. No fusion with the plasma membrane was observed at neutral pH conditions. However, when virus was bound to cells and the pH was lowered to 5.0, we observed a strong labeling of the plasma membrane. Electron microscopy revealed low pH triggered conformational alterations of the S ectodomain. Very likely, these alterations are irreversible because low-pH treatment of viruses in the absence of target membranes caused an irreversible loss of the fusion activity. The results imply that endocytosis plays a major role in MHV-A59 infection and the acidic pH of the endosomal compartment triggers a conformational change of the S protein mediating fusion.  相似文献   

11.
We have previously shown that glycosphingolipid analogs are internalized primarily via caveolae in various cell types. This selective internalization was not dependent on particular carbohydrate headgroups or sphingosine chain length. Here, we examine the role of sphingosine structure in the endocytosis of BODIPYtrade mark-tagged lactosylceramide (LacCer) analogs via caveolae. We found that whereas the LacCer analog with the natural (D-erythro) sphingosine stereochemistry is internalized mainly via caveolae, the non-natural (L-threo) LacCer analog is taken up via clathrin-, RhoA-, and Cdc42-dependent mechanisms and largely excluded from uptake via caveolae. Unlike the D-erythro-LacCer analog, the L-threo analog did not cluster in membrane microdomains when added at higher concentrations (5-20 microm). In vitro studies using small unilamellar vesicles and giant unilamellar vesicles demonstrated that L-threo-LacCer did not undergo a concentration-dependent excimer shift in fluorescence emission such as that seen with BODIPYtrade mark-sphingolipids with natural stereochemistry. Molecular modeling studies suggest that in d-erythro-LacCer, the disaccharide moiety extends above and in the same plane as the sphingosine hydrocarbon chain, while in L-threo-LacCer the carbohydrate group is nearly perpendicular to the hydrocarbon chain. Together, these results suggest that the altered stereochemistry of the sphingosine group in L-threo-LacCer results in a perturbed structure, which is unable to pack closely with natural membrane lipids, leading to a reduced inclusion in plasma membrane microdomains and decreased uptake by caveolar endocytosis. These findings demonstrate the importance of the sphingolipid stereochemistry in the formation of membrane microdomains.  相似文献   

12.
Influenza A virus H5N1 presents a major threat to human health. The entry of influenza virus into host cells is believed to be mediated by hemagglutinin (HA), a virus surface glycoprotein that can bind terminal sialic acid residues on host cell glycoproteins and glycolipids. In this study, we elucidated the pathways through which H5N1 enters human lung carcinoma cell line A549. We first proved that H5N1 can enter A549 cells via endocytosis, as lysosomotropic agents, such as bafilomycin A1 and chloroquine, can rescue H5N1-induced A549 cell death. By using specific inhibitors, and siRNAs that target the clathrin pathway, we further found that H5N1 could enter A549 cells via clathrin-mediated endocytosis, while inhibitors targeting caveolae-mediated endocytosis could not inhibit H5N1 cell entry. These findings expand our understanding of H5N1 pathogenesis and provide new information for anti-viral drug research. Supported by the National Natural Science Foundation of China (Grant No. 30623009) and National Basic Research Program of China (Grant No. 2005CB523000)  相似文献   

13.
Simian Virus 40 (SV40) has been shown to enter host cells by caveolar endocytosis followed by transport via caveosomes to the endoplasmic reticulum (ER). Using a caveolin-1 (cav-1)-deficient cell line (human hepatoma 7) and embryonic fibroblasts from a cav-1 knockout mouse, we found that in the absence of caveolae, but also in wild-type embryonic fibroblasts, the virus exploits an alternative, cav-1-independent pathway. Internalization was rapid (t1/2 = 20 min) and cholesterol and tyrosine kinase dependent but independent of clathrin, dynamin II, and ARF6. The viruses were internalized in small, tight-fitting vesicles and transported to membrane-bounded, pH-neutral organelles similar to caveosomes but devoid of cav-1 and -2. The viruses were next transferred by microtubule-dependent vesicular transport to the ER, a step that was required for infectivity. Our results revealed the existence of a virus-activated endocytic pathway from the plasma membrane to the ER that involves neither clathrin nor caveolae and that can be activated also in the presence of cav-1.  相似文献   

14.
Herpes simplex virus (HSV) infection of many cultured cells, e.g., Vero cells, can be initiated by receptor binding and pH-neutral fusion with the cell surface. Here we report that a major pathway for HSV entry into the HeLa and CHO-K1 cell lines is dependent on endocytosis and exposure to a low pH. Enveloped virions were readily detected in HeLa or receptor-expressing CHO cell vesicles by electron microscopy at <30 min postinfection. As expected, images of virus fusion with the Vero cell surface were prevalent. Treatment with energy depletion or hypertonic medium, which inhibits endocytosis, prevented uptake of HSV from the HeLa and CHO cell surface relative to uptake from the Vero cell surface. Incubation of HeLa and CHO cells with the weak base ammonium chloride or the ionophore monensin, which elevate the low pH of organelles, blocked HSV entry in a dose-dependent manner. Noncytotoxic concentrations of these agents acted at an early step during infection by HSV type 1 and 2 strains. Entry mediated by the HSV receptor HveA, nectin-1, or nectin-2 was also blocked. As analyzed by fluorescence microscopy, lysosomotropic agents such as the vacuolar H(+)-ATPase inhibitor bafilomycin A1 blocked the delivery of virus capsids to the nuclei of the HeLa and CHO cell lines but had no effect on capsid transport in Vero cells. The results suggest that HSV can utilize two distinct entry pathways, depending on the type of cell encountered.  相似文献   

15.
Viruses are intracellular parasites that rely upon the host cell machinery for their life cycle. Newly generated virus particles have to transmit their genomic information to uninfected cells/organisms. Viral entry is the process to gain access to viral replication sites within uninfected cells, a multistep course of events that starts with binding to target cells. Since viruses are simple in structure and composition and lack any locomotive capacity, viruses depend on hundreds of host cell proteins during entry. Most animal viruses take advantage of endocytosis to enter cells. Cell biological, morphological and biochemical studies, live cell imaging and systematic approaches have identified various new endocytic mechanisms besides clathrin‐mediated endocytosis, macropinocytosis and caveolar/lipid raft‐mediated endocytosis. Hence, studying virus entry has become ever more complex. This review provides a cell biological overview of the existing endocytic mechanisms and strategies used or potentially used by viruses to enter cells.  相似文献   

16.
Lin YW  Lin HY  Tsou YL  Chitra E  Hsiao KN  Shao HY  Liu CC  Sia C  Chong P  Chow YH 《PloS one》2012,7(1):e30507
Enterovirus (EV) 71 infection is known to cause hand-foot-and-mouth disease (HFMD) and in severe cases, induces neurological disorders culminating in fatality. An outbreak of EV71 in South East Asia in 1997 affected over 120,000 people and caused neurological disorders in a few individuals. The control of EV71 infection through public health interventions remains minimal and treatments are only symptomatic. Recently, human scavenger receptor class B, member 2 (SCARB2) has been reported to be a cellular receptor of EV71. We expressed human SCARB2 gene in NIH3T3 cells (3T3-SCARB2) to study the mechanisms of EV71 entry and infection. We demonstrated that human SCARB2 serves as a cellular receptor for EV71 entry. Disruption of expression of SCARB2 using siRNAs can interfere EV71 infection and subsequent inhibit the expression of viral capsid proteins in RD and 3T3-SCARB2 but not Vero cells. SiRNAs specific to clathrin or dynamin or chemical inhibitor of clathrin-mediated endocytosis were all capable of interfering with the entry of EV71 into 3T3-SCARB2 cells. On the other hand, caveolin specific siRNA or inhibitors of caveolae-mediated endocytosis had no effect, confirming that only clathrin-mediated pathway was involved in EV71 infection. Endocytosis of EV71 was also found to be pH-dependent requiring endosomal acidification and also required intact membrane cholesterol. In summary, the mechanism of EV71 entry through SCARB2 as the receptor for attachment, and its cellular entry is through a clathrin-mediated and pH-dependent endocytic pathway. This study on the receptor and endocytic mechanisms of EV71 infection is useful for the development of effective medications and prophylactic treatment against the enterovirus.  相似文献   

17.
Murine ecotropic leukemia viruses use a common receptor for entry into host cells; however, the site of virus fusion appears to differ with the host cell. Entry in mouse NIH 3T3 fibroblasts is by endocytosis, whereas entry in rat XC sarcoma cells is by surface fusion. We report here the identification of a step common to both entry pathways, as well as of a step unique to the endocytic pathway. Recent demonstration of the clustering of the virus receptor on rat cells suggested a possible interaction of the receptor with the cellular cytoskeleton (M. H. Woodard, W. A. Dunn, R. O. Laine, M. Malandro, R. McMahon, O. Simell, E. R. Block, and M. S. Kilberg, Am. J. Physiol. 266:E817-E824, 1994). We tested the hypothesis that such an interaction might influence receptor function. We found that entry into NIH 3T3 and XC cells was greatly diminished by the disruption of the actin network before but not shortly after virus internalization, suggesting the actin network plays a critical role in an early step common to both entry pathways. Disruption of microtubules before and shortly after virus internalization markedly reduced entry in NIH 3T3 cells, while entry into XC cells remained efficient. These data suggest that intact microtubules are required in a postpenetration step unique to efficient virus entry via endocytosis. The physiological function of the receptor was not affected by disruption of either the actin network or the microtubules, as the uptake of cationic amino acids in NIH 3T3 and XC cells was comparable to that in control cells even when the cytoskeleton remained disrupted for as long as 3 h.  相似文献   

18.
Chou T 《Biophysical journal》2007,93(4):1116-1123
Infection by membrane-enveloped viruses requires the binding of receptors on the target cell membrane to glycoproteins, or "spikes," on the viral membrane. The initial entry mechanism is usually classified as fusogenic or endocytotic. However, binding of viral spikes to cell surface receptors not only initiates the viral adhesion and the wrapping process necessary for internalization, but can simultaneously initiate direct fusion with the cell membrane. Both fusion and internalization have been observed to be viable pathways for many viruses. We develop a stochastic model for viral entry that incorporates a competition between receptor-mediated fusion and endocytosis. The relative probabilities of fusion and endocytosis of a virus particle initially nonspecifically adsorbed on the host cell membrane are computed as functions of receptor concentration, binding strength, and number of spikes. We find different parameter regimes where the entry pathway probabilities can be analytically expressed. Experimental tests of our mechanistic hypotheses are proposed and discussed.  相似文献   

19.
Epstein-Barr virus entry   总被引:5,自引:5,他引:0  
  相似文献   

20.
Hepatitis B virus (HBV) is a leading cause of cirrhosis and hepatocellular carcinoma worldwide, with 250 million individuals chronically infected. Many stages of the HBV infectious cycle have been elucidated, but the mechanisms of HBV entry remain poorly understood. The identification of the sodium taurocholate cotransporting polypeptide (NTCP) as an HBV receptor and the establishment of NTCP‐overexpressing hepatoma cell lines susceptible to HBV infection opens up new possibilities for investigating these mechanisms. We used HepG2‐NTCP cells, and various chemical inhibitors and RNA interference (RNAi) approaches to investigate the host cell factors involved in HBV entry. We found that HBV uptake into these cells was dependent on the actin cytoskeleton and did not involve macropinocytosis or caveolae‐mediated endocytosis. Instead, entry occurred via the clathrin‐mediated endocytosis pathway. HBV internalisation was inhibited by pitstop‐2 treatment and RNA‐mediated silencing (siRNA) of the clathrin heavy chain, adaptor protein AP‐2 and dynamin‐2. We were able to visualise HBV entry in clathrin‐coated pits and vesicles by electron microscopy (EM) and cryo‐EM with immunogold labelling. These data demonstrating that HBV uses a clathrin‐mediated endocytosis pathway to enter HepG2‐NTCP cells increase our understanding of the complete HBV life cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号