首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT The effects of cadmium on three ciliates are reported here. Cultures of Stylonychia lemnae, Stylonychia notophora and Oxytricha granulifera were treated with different doses of Cd according to tolerance. The two species of Stylonychia are very sensitive to the metal, white O. granulifera tolerates higher doses. Adding 50 μM of Cd to the medium did not damage cells. The accumulated metal is almost totally present in the particulate fraction after day 3. Two Cd-Zn linking fractions were separated from the soluble fraction of culture treated on day 1. The first protein linking 17 μg Cd/mg showed an ultraviolet absorption spectrum similar to that of Cd-thioneins. Preliminary amino acid analyses indicated that it contained 13% cysteine. The second protein, linking 60 μg Cd/mg, was a glycoprotein. Its ultraviolet absorption spectrum and amino acid analysis showed that this binding protein was far from being a metallothionein: its cysteine content was very low and aromatic and cyclic residues were present. This Cd-linking compound seems to be unique, since it was very different both from metallothioneins and chelatins isolated by other protozoa. The protective role of these chelating proteins is discussed.  相似文献   

2.
Properties of the telomeric DNA-binding protein from Oxytricha nova   总被引:17,自引:0,他引:17  
C M Price  T R Cech 《Biochemistry》1989,28(2):769-774
Telomeres of Oxytricha macronuclear DNA exist as discrete DNA-protein complexes. Different regions of each complex display characteristic DNA-protein interactions. In the most terminal region, binding of a 43- and a 55-kDa protein to the telomeric DNA appears to account for all the DNA-protein interactions that can be detected by chemical and nuclease footprinting. We have used gradient sedimentation and protein-protein cross-linking to establish that the 43- and 55-kDa proteins are subunits of a heterodimer. Both subunits are very basic, which is unexpected considering the resistance of the DNA-protein interaction to high concentrations of salt. It is extremely difficult to dissociate the two subunits either from telomeric DNA or from each other. Even after extensive treatment of protein preparations with nuclease, a fragment of the 3' tail from macronuclear DNA remains bound to the protein. A wide range of conditions was screened for dissociation of the subunits from the DNA and/or from each other. Dissociation was only obtained by using conditions that caused some inactivation of the DNA-binding capacity of the protein. The use of reagents that covalently modify sulfydryl groups during the purification procedure facilitates preparation of telomere protein with full DNA-binding activity.  相似文献   

3.
4.
The complete sequences of four TBE1 transposons from Oxytricha fallax and O. trifallax are presented and analyzed. Although two TBE1s are 98% identical to each other at the nucleotide level, the remaining two TBE1s are only 90% identical both to each other and to the other two. This large evolutionary divergence allows us to identify conserved TBE1 features. TBE1 transposons are 4.1 kbp long and are flanked by 3 bp target-site repeats. The elements consist of 78 bp inverted terminal repeats, of which the 17 terminal base pairs are Oxytricha telomere repeats; a central conserved section of 550 bp that includes a set of nested direct and inverted sequence repeats; and 3 open reading frames conserved for encoded amino acid sequence. The three open reading frames encode a 22 kDa basic protein of unknown function, a 42 kDa ‘D,D35E’ transposase, and a 57 kDa chimeric C 2 H 2 zinc finger/protein kinase. The protein kinase domain of the 57 kDa protein is unusual, lacking a conserved ATP-binding motif. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
We have found abundant telomere-specific terminal transferase activity in crude macronuclear extracts from vegetatively growing cells of the hypotrichous ciliate Oxytricha nova. This activity adds two to seven tandem repeats of the sequence GGGGTTTT (the Oxytricha telomeric repeat) to the 3' end of oligonucleotide primers ending in repeats of G4T4 and always adds the repeats in the proper phase. The activity requires the presence of micromolar amounts of dGTP and dTTP as well as single-stranded oligomer primers ending 3' with repeats of the Oxytricha telomeric sequence. A nuclease activity is present in the extracts which is closely balanced with telomere terminal transferase activity. We propose a simple model for replication of the ends of linear DNA molecules based on the telomere terminal transferase.  相似文献   

6.
研究旨在对尖毛虫属内现有物种的3种乱序小核基因结构进行比较,探讨其乱序模式。于湛江湖光红树林水域中采集到一个尖毛虫属物种Oxytricha sp.(ZJ),成功扩增了其肌动蛋白Ⅰ(ActinⅠ)、端粒结合蛋白(α-TBP)、DNA聚合酶α(DNA pol α)3个乱序基因的完整大核基因序列和完整/部分小核基因序列,并结合已有资料对比研究了尖毛虫属这3个乱序基因的进化。结果表明:(1)Oxytricha sp.(ZJ)与O.nova的小核Actin Ⅰ基因具有相同的乱序模式,区别于其余的尖毛虫属物种;在增加尖毛虫属物种的基础上,对前人推测提出了质疑,我们认为MDS-IES接合处移动现象在乱序MDSs之间并非比非乱序MDSs之间更保守。(2)Oxytricha sp.(ZJ)与O.nova的小核α-TBP基因具有相同乱序模式和相似长度的IESs。(3)Oxytricha sp.(ZJ)的小核DNA pol α基因乱序模式,区别于任一已报道物种,与属内O. trifallax最为相近。基于序列分析,在DNA pol α基因中发现了一例IES转换为MDS的痕迹,以及由此导致原先MDS的丢失。研究发现在编码区内IES向MDS的转变,使得本应删除的序列成为基因组永久保留的一部分。  相似文献   

7.
Assembly and self-association of oxytricha telomeric nucleoprotein complexes   总被引:14,自引:0,他引:14  
M K Raghuraman  T R Cech 《Cell》1989,59(4):719-728
Two types of specific telomeric protein-DNA complex are reconstituted upon incubation of purified Oxytricha telomere protein with (T4G4)4, an oligodeoxynucleotide of telomeric sequence. The complexes differ in electrophoretic mobility, in protein-DNA contacts, and in the rate of DNA exchange. The patterns of protein-DNA interaction determined by modification interference suggest a model in which the protein can bind either to the two T4G4 repeats at the 3' end or to two internal repeats; in the latter case, it can make a different set of contacts with the terminal repeat to form the more stable complex. Native telomeric chromatin isolated from Oxytricha contains both types of complexes. The reconstituted monomeric complexes associate to give a high molecular weight form that has an altered chemical footprint. Such interactions may mediate the association of chromosomal telomeres in vivo.  相似文献   

8.
In the macronucleus of the ciliate Oxytricha nova, telomeres end with single-stranded (T4G4)2 DNA bound to a heterodimeric telomere protein (alpha beta). Both the alpha and beta subunits (alpha-TP and beta-TP) were phosphorylated in asynchronously growing Oxytricha; beta-TP was phosphorylated to a much higher degree. In vitro, mouse cyclin-dependent kinases (Cdks) phosphorylated beta-TP in a lysine-rich domain that is not required for specific DNA binding but is implicated in higher order structure formation of telomeres. Therefore, phosphorylation of beta-TP could modulate a function of the telomere protein that is separate from specific DNA binding. Phosphoamino acid analysis revealed that the mouse Cdks modify predominantly threonine residues in beta-TP, consistent with the observation that beta-TP contains two consensus Cdk recognition sequences containing threonine residues. In Xenopus egg extracts that undergo cell cycling, beta-TP was phosphorylated in M phase and dephosphorylated in interphase. This work provides the first direct evidence of phosphorylation at telomeres in any organism, as well as indirect evidence for cell cycle regulation of telomere phosphorylation. The Cdc2/cyclin A and Cdc2/cyclin B kinases are required for major mitotic events. An attractive model is that phosphorylation of beta-TP by these kinases is required for the breakdown of telomere associations with each other and/or with nuclear structures prior to nuclear division.  相似文献   

9.
Oligonucleotides bearing 4 repeats of telomeric deoxyguanosine-rich sequence undergo a monovalent cation-induced transition to a folded conformation with G-G base pairs, modeled as a 'G-quartet' structure. We have now deduced the rates of folding and unfolding of d(TTTTGGGG)4, which has four repeats of the Oxytricha telomeric DNA sequence. The estimated average values of delta G for the folded form at 37 degrees C are -2.2 kcal/mol and -4.7 kcal/mol in 50 mM na+ and K+, respectively. The fully folded DNA is not recognized by the Oxytricha telomere-binding protein; the substrate for protein binding has properties consistent with its being partly or fully unfolded. In confirmation of this conclusion, prevention of DNA folding by methylation enables the protein to bind as rapidly in the presence of monovalent cations as in their absence. The slow unfolding (t1/2 = 4 hr and 18 hr at 37 degrees C in Na+ and K+, respectively) of the DNA suggests that such structures would be long-lived if they formed in vivo, unless they can be actively unfolded. The inability of the telomere-binding protein to bind the stable, folded form of the 4-repeat telomeric sequence is a problem that may be circumvented in vivo by avoiding four single-stranded repeats.  相似文献   

10.
11.
ABSTRACT IES-LA is a short Internal Eliminated Sequence interrupting LA-MSC, a protein-coding gene of the 81 locus of Oxytricha fallax and O. trifallax. IES-LA is precisely excised from the gene during development of the macronucleus. The internal eliminated sequence is bounded by CAAT… AATG, and thereby resembles a TBE1 transposon internal eliminated sequence insertion that is grossly shortened (4.1 kbp to 52-64 bp), consistent with the hypothesis that short IESs are degenerated ancient transposons. The pattern of sequence conservation between five alleles of IES-LA shows that it differs from previously characterized classes of ciliate short IESs: while many short IESs have conserved ends and diverged centers, IES-LA is more conserved in its center and its ends are diverged. This implies a excision mechanism for IES-LA that is distinct from those for other known Oxytricha IESs.  相似文献   

12.
The genus Oxytricha Bory de Saint‐Vincent in Lamouroux, Bory de Saint‐Vincent and Deslongchamps, 1824 comprises about 38 species distributed worldwide and has been considered to be a nonmonophyletic group. Based on living observations, protargol preparations, and a small subunit ribosomal RNA (SSU rRNA) gene sequence, we describe a new subspecies Oxytricha granulifera chiapasensis n. subsp. This new taxon is morphologically characterized by undulating membranes basically in a Stylonychia‐pattern, six dorsal kineties, size in vivo ca. 60–120 × 20–40 μm, 21–30 right and 21–31 left marginal cirri, 22–29 adoral membranelles, and spherical cortical granules arranged in longitudinal rows on the dorsal side. In terms of the SSU rRNA gene sequence, the new subspecies differs from populations of O. granulifera from GENBANK by 7–35 nucleotides. Phylogenetic analyses showed that Oxytricha granulifera gene sequences were nested into three groups, with the new subspecies included in one of them. Oxytricha granulifera chiapasensis n. subsp. is different from Oxytricha granulifera granulifera Foissner and Adam, 1983 and Oxytricha granulifera quadricirrata Blatterer and Foissner, 1988 based on: (i) undulating membranes in Stylonychia‐pattern, (ii) formation of a sixth dorsal kinety during morphogenesis, (iii) the adoral membranelles number, and (iv) inhabiting freshwater habitats.  相似文献   

13.
The heterodimeric Oxytricha nova telomere end binding protein, the original telomere end binding protein characterized, contains four OB-fold domains used for recognition of single-stranded telomeric DNA. In contrast, only solitary OB-fold domains have been found in the telomere end binding proteins from yeast and higher eukaryotes. Using a sliding-window algorithm coupled with sequence profile-profile analysis, we provide support for the existence of multiple OB-fold domains in two other telomeric ssDNA binding proteins, vertebrate Pot1 and budding yeast Cdc13. This common usage of multiple, tandem OB-fold domains in telomeric end binding proteins extends the known evolutionary conservation of eukaryotic end-protection mechanisms.  相似文献   

14.
Several independent lines of evidence suggest that the modern genetic system was preceded by the 'RNA world' in which RNA genes encoded RNA catalysts. Current gaps in our conceptual framework of early genetic systems make it difficult to imagine how a stable RNA genome may have functioned and how the transition to a DNA genome could have taken place. Here we use the single-celled ciliate, Oxytricha, as an analog to some of the genetic and genomic traits that may have been present in organisms before and during the establishment of a DNA genome. Oxytricha and its close relatives have a unique genome architecture involving two differentiated nuclei, one of which encodes the genome on small, linear nanochromosomes. While its unique genomic characteristics are relatively modern, some physiological processes related to the genomes and nuclei of Oxytricha may exemplify primitive states of the developing genetic system.  相似文献   

15.
Summary The small subunit ribosomal RNA (16S-like rRNA) coding regions of the hypotrichous ciliatesOnychodromus quadricornutus andOxytricha granulifera were amplified using polymerase chain reaction techniques. Complete sequences were determined for the amplified genes and compared to those of other ciliated protozoa. In phylogenetic trees inferred using distance matrix methods oxytrichids are not seen as a cohesive phylogenetic group.Oxytricha nova is most closely related toStylonychia pustulata in a lineage that also includesO. quadricornutus. This phylogeny contradicts phylogenetic schemes in whichOnychodromus is considered to be a primitive hypotrichous ciliate and suggests thatO. nova was misidentified as members of the genusOxytricha.  相似文献   

16.
W Wang  R Skopp  M Scofield    C Price 《Nucleic acids research》1992,20(24):6621-6629
We have identified two 1.6 kb macronuclear DNA molecules from Euplotes crassus that hybridize to the alpha subunit of the Oxytricha telomere protein. We have shown that one of these molecules encodes the 51 kDa Euplotes telomere protein while the other appears to encode a homolog of the telomere protein. Although this homolog clearly differs in sequence from the Euplotes telomere protein, the two proteins share extensive amino acid sequence identity with each other and with the alpha subunit of the Oxytricha telomere protein. In all three proteins 35-36% of the amino acids are identical, while 54-56% are similar. The most extended regions of sequence conservation map within the N-terminal section; this section has been shown to comprise the DNA-binding domain in the Euplotes telomere protein. Our findings suggest that some of the conserved amino acids may be involved in DNA recognition and binding. The gene encoding the telomere protein homolog contains two introns; one of these introns is only 24 bp in length. This is the smallest mRNA intron reported to date.  相似文献   

17.
Oxytricha nova telomere end-binding protein specifically recognizes and caps single strand (T(4)G(4))(n) telomeric DNA at the very 3'-ends of O. nova macronuclear chromosomes. Proteins homologous to the N-terminal domain of OnTEBP alpha subunit have now been identified in Oxytricha trifallax, Stylonychia mytilis, Euplotes crassus, Schizosaccharomyces pombe, and Homo sapiens, suggesting that this protein is widely distributed in eukaryotes. We describe here the crystal structures of the N-terminal single-stranded DNA (ssDNA)-binding domain of O. nova telomere end-binding protein alpha subunit both uncomplexed and complexed with single strand telomeric DNA. These structures show how the N-terminal domain of alpha alone, in the absence of the beta subunit and without alpha dimerization, can bind single-stranded telomeric DNA in a sequence-specific and 3'-end-specific manner. Furthermore, comparison of the uncomplexed and complexed forms of this protein shows that the ssDNA-binding site is largely pre-organized in the absence of ssDNA with modest, but interesting, rearrangements of amino acid side-chains that compose the ssDNA-binding site. The structures described here extend our understanding of structures of O. nova telomeric complexes by adding uncomplexed and complexed forms of monomeric alpha to previously described structures for (alpha 56/ssDNA)(2) dimer and alpha 56/beta 28/ssDNA ternary complexes. We believe that each of these four structures represent intermediates in an ordered assembly/disassembly pathway for O. nova telomeric complexes.  相似文献   

18.
19.
Telomeres are the specialized protein--DNA complexes that cap and protect the ends of linear eukaryotic chromosomes. The extreme 3' end of the telomeric DNA in Oxytricha nova is bound by a two-subunit sequence-specific and 3' end-specific protein called the telomere end-binding protein (OnTEBP). Here we describe the crystal structure of the alpha-subunit of OnTEBP in complex with T4G4 single-stranded telomeric DNA. This structure shows an (alpha--ssDNA)2 homodimer with a large approximately 7,000 A2 protein--protein interface in which the domains of alpha are rearranged extensively from their positions in the structure of an alpha--beta--ssDNA ternary complex. The (alpha--ssDNA)2 complex can bind two telomeres on opposite sides of the dimer and, thus, acts as a protein mediator of telomere--telomere associations. The structures of the (alpha--ssDNA)2 dimer presented here and the previously described alpha--beta--ssDNA complex demonstrate that OnTEBP forms multiple telomeric complexes that potentially mediate the assembly and disassembly of higher order telomeric structures.  相似文献   

20.
SYNOPSIS. Comparison of RNA molecules between certain protozoa using the technic of nucleic acid hybridisation revealed that there are complementary sequences for ribosomal RNA molecules in the genomes of such cells. Furthermore the genes for ribosomal RNA have been conserved during evolution in this group of organisms. On the other hand, RNA molecules from these protozoa which can be considered to be "messengers" show little in the way of sequence relationships. By utilising the technic of hybridisation it was found that Oxytricha can compete effectively against Paramecium ribosomal RNA for Tetrahymena DNA but the ribosomal RNA sequences of the latter could not compete completely against Paramecium ribosomal RNA for Oxytricha DNA. The result is interpreted to show that different ribosomal sequences were hybridising with each of the DNA samples from Tetrahymena and Oxytricha. A general interpretation of this result in terms of ribosome evolution is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号