首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
W. Stephan  S. J. Mitchell 《Genetics》1992,132(4):1039-1045
We have estimated DNA sequence variation within and between two populations of Drosophila ananassae, using six-cutter restriction site variation at vermilion (v) and furrowed (fw). These two gene regions are located close to the centromere on the left and right X chromosome arms, respectively. In the fw region, no DNA polymorphism was detected within each population. In the v region, average heterozygosity per nucleotide was very low in both populations (pi = 0.0005 in the Burma population, and 0.0009 in the India population). These estimates are significantly lower than those from loci in more distal gene regions. The distribution of DNA polymorphisms between both populations was also striking. At fw, three fixed differences between the Burma and India populations were detected (two restriction site differences and one insertion/deletion of approximately 2 kb). At v, each DNA polymorphism in high frequency in the total sample was nearly fixed in one or the other population, although none of them reached complete fixation. The observed pattern of reduced variation within populations and fixed differences between populations appears to correlate with recombination rate. We conclude that recent hitchhiking associated with directional selection is the best explanation for this pattern. The data indicate that different selective sweeps have occurred in the two populations. The possible role of genetic hitchhiking in rapid population differentiation in gene regions of restricted recombination is discussed.  相似文献   

2.
Comparison of the physical and recombination maps of the mouse X chromosome   总被引:2,自引:0,他引:2  
The locations of five random mouse genomic DNA markers and five cloned genes, including the genes for clotting factors VIII and IX (Cf-8 and Cf-9), Duchenne muscular dystrophy (Dmd), phosphoglycerate kinase-1 (Pgk-1), and alpha-galactosidase (Ags), on the mouse X chromosome were determined by in situ hybridization. The five random DNA markers provide new genetic loci with useful restriction fragment length polymorphisms between mouse strains and species, including one locus close to the centromeric region of the mouse X chromosome. The physical map and the recombination map of these loci on the X chromosome were compared. There was good agreement in the order of loci. Relative distances between loci were consistent along the X chromosome, with the exception of the telomeric end of the long arm, where the recombination fraction observed between loci closely associated on the physical map was higher than that between similarly spaced markers located in the proximal region of the X chromosome. These results are discussed in comparison to the human X-chromosome map.  相似文献   

3.
Sequence analysis of genomic DNA from the protozoan parasite Perkinsus marinus at two loci revealed genetic polymorphisms within and among different cultured isolates. Genomic DNA from 12 Perkinsus marinus isolates was amplified at the internal transcribed spacer region and at an anonymous locus previously identified to contain polymorphisms by restriction fragment length polymorphism analysis. Fourteen polymorphic nucleotide positions were identified at the internal transcribed spacer region; eight in internal transcribed spacer 1 and six in internal transcribed spacer 2. Thirteen polymorphic nucleotide sites were identified within the anonymous locus. In some instances, more than three different sequences were observed at both the internal transcribed spacer region and at the anonymous locus from a single clonal isolate, suggesting the possibility of recombination in cultured cells and/or strand jumping during the polymerase chain reaction. Intra-isolate sequence variation (3.46% for the anonymous locus and 3.08% for internal transcribed spacer 1) was in several cases as high as inter-isolate sequence variation, even in one isolate where recombination was not evident. High intra- and inter-isolate variation detected at both loci demonstrates the importance of determining the genetic variation of each locus prior to development of sequence-based molecular diagnostics.  相似文献   

4.
Restriction-site and sequence-length polymorphism in the Om(1D) locus region on the X chromosome in Drosophila ananassae was investigated for three natural populations (from Burma, India, and Brazil), by using hexanucleotide-recognizing restriction enzymes. The estimates of average heterozygosity per nucleotide (pi) were 0.0085, 0.0043, and 0.0004 for the Burma, India, and Brazil populations, respectively, and the average frequencies of insertions/deletions were 0.078, 0.054, and 0.007/chromosome/kb. While the pi values at this locus are similar to the estimates obtained from other euchromatic loci in D. ananassae or in other Drosophila species, the frequencies of insertions/deletions are much higher than those previously reported from Drosophila. The exceptionally high frequencies of length polymorphisms in the Burmese sample and, to a lesser extent, in the Indian sample indicate that the hypermutability of Om(1D), caused by the frequent insertion of the transposable element tom, may be due to locus-specific rather than to tom element-specific properties. The low level of nucleotide variation in the Brazilian population seems to be due to a recent bottleneck of population size. This population was apparently founded in recent years by a small number of individuals and has been relatively isolated ever since.  相似文献   

5.
Although alphoid DNA sequences shared among acrocentric chromosomes have been identified, no human chromosome 21-specific sequence has been isolated from the centromeric region. To identify alphoid DNA restriction fragment length polymorphisms (RFLPs) specific for chromosome 21, we hybridized human genomic DNA with alphoid DNA probes [L1.26; aRI(680),21-208] shared by chromosomes 13 and 21. We detected RFLPs with restriction enzymes ECoRI, HaeIII, MboI,StuI, and TaqI. The segregation of these RFLPs was analyzed in the 40 CEPH families. Linkage analysis between these RFLPs and loci previously mapped to either chromosome 13 or 21 revealed RFLPs that appear to be specific to chromosome 21. These polymorphisms may be useful as genetic markers of the centromeric region of chromosome 21. Different alphoid loci within the centromeric region of chromosome 13 were identified.  相似文献   

6.
A drastic decline has occurred in the size of the Uganda elephant population in the last 40 years, exacerbated by two main factors; an increase in the size of the human population and poaching for ivory. One of the attendant consequences of such a decline is a reduction in the amount of genetic diversity in the surviving populations due to increased effects of random genetic drift. Information about the amount of genetic variation within and between the remaining populations is vital for their future conservation and management. The genetic structure of the African elephant in Uganda was examined using nucleotide variation of mitochondrial control region sequences and four nuclear microsatellite loci in 72 individuals from three localities. Eleven mitochondrial DNA (mtDNA) haplotypes were observed, nine of which were geographically localized. We found significant genetic differentiation between the three populations at the mitochondrial locus while three out of the four microsatellite loci differentiated KV and QE, one locus differentiated KV and MF and no loci differentiated MF and QE. Expected heterozygosity at the four loci varied between 0.51 and 0.84 while nucleotide diversity at the mitochondrial locus was 1.4%. Incongruent patterns of genetic variation within and between populations were revealed by the two genetic systems, and we have explained these in terms of the differences in the effective population sizes of the two genomes and male-biased gene flow between populations.  相似文献   

7.
T. S. Takano  S. Kusakabe    T. Mukai 《Genetics》1991,129(3):753-761
Restriction map variation in four gene regions (Adh, Amy, Pu and Gpdh) was surveyed for 86 second chromosomes from northern (Aomori) and southern (Ogasawara) Japanese populations of Drosophila melanogaster (43 chromosomes from each population). The regions examined cover a total of 62 kilobases. Estimates of nucleotide diversity (pi) were approximately constant across the gene regions and populations examined. The distribution of restriction site polymorphisms was compatible with the expectation from the neutral mutation-random genetic drift hypothesis, but insertion/deletion polymorphisms were not consistent with it. While the two populations shared a majority of restriction site polymorphisms, frequencies of individual restriction site variants were significantly different between the two populations at 7 out of 35 segregating sites. In addition, an insertion in the Amy region was found in 15 chromosomes from the Ogasawara sample but absent in the Aomori sample. A considerable difference was observed in the number of rare insertions and deletions between the two populations. The numbers of aberrations uniquely represented were 16 in the Ogasawara sample and only 3 in the Aomori sample. These findings suggest that the two populations were differentiated from each other to some degree by means of random genetic drift and/or other factors.  相似文献   

8.
K-W Kim  S C Griffith  T Burke 《Heredity》2016,116(4):409-416
Colour polymorphism is known to facilitate speciation but the genetic basis of animal pigmentation and how colour polymorphisms contribute to speciation is poorly understood. Restricted recombination may promote linkage disequilibrium between the colour locus and incompatibility genes. Genomic rearrangement and the position of relevant loci within a chromosome are important factors that influence the frequency of recombination. Therefore, it is important to know the position of the colour locus, gene order and recombination landscape of the chromosome to understand the mechanism that generates incompatibilities between morphs. Recent studies showed remarkable pre- and postzygotic incompatibilities between sympatric colour morphs of the Gouldian finch (Erythrura gouldiae), in which head feather colour is genetically determined by a single sex-linked locus, Red. We constructed a genetic map for the Z chromosome of the Gouldian finch (male-specific map distance=131 cM), using 618 captive-bred birds and 34 microsatellite markers, to investigate the extent of inter- and intraspecific genomic rearrangements and variation in recombination rate within the Z chromosome. We refined the location of the Red locus to a ~7.2-cM interval in a region with a moderate recombination rate but outside the least-recombining, putative centromeric region. There was no evidence of chromosome-wide genomic rearrangements between the chromosomes carrying the red or black alleles with the current marker resolution. This work will contribute to identifying the causal gene, which will in turn enable alternative explanations for the association between incompatibility and colouration, such as fine-scale linkage disequilibrium, genomic rearrangements and pleiotropy, to be tested.  相似文献   

9.
We report a high-resolution genetic linkage map of the region Xp11.4 to Xq13.3, spanning the centromere of the X chromosome and encompassing approximately 30 cM. This 18-locus map is composed of 11 intervals that are spaced on average about 3 cM apart. Markers incorporated into the map together detect 19 distinct polymorphisms and include five genes (TIMP, SYP, AR, CCG1, PGK1), the OATL1 cluster, the hypervariable locus DXS255, the centromeric locus DXZ1, and 10 other anonymous DNA segments. Given that this map spans roughly one-fifth of the length of the X chromosome and includes many loci currently used in both diagnosis and mapping of X-linked disorders, it should be useful for genetic counseling and for guiding efforts to clone disease genes in this region.  相似文献   

10.
Genes that code for products involved in the physiology of a phenotype are logical candidates for explaining interindividual variation in that phenotype. We present a methodology for discovering associations between genetic variation at such candidate loci (assayed through restriction endonuclease mapping) with phenotypic variation at the population level. We confine our analyses to DNA regions in which recombination is very rare. In this case, the genetic variation at the candiate locus can be organized into a cladogram that represents the evolutionary relationships between the observed haplotypes. Any mutation causing a significant phenotypic effect should be imbedded within the same historical structure defined by the cladogram. We showed, in the first paper of this series, how to use the cladogram to define a nested analysis of variance (NANOVA) that was very efficient at detecting and localizing phenotypically important mutations. However, the NANOVA of haplotype effects could only be applied to populations of homozygous genotypes. In this paper, we apply the quantitative genetic concept of average excess to evaluate the phenotypic effect of a haplotype or group of haplotypes stratified and contrasted according to the nested design defined by the cladogram. We also show how a permutational procedure can be used to make statistical inferences about the nested average excess values in populations containing heterozygous as well as homozygous genotypes. We provide two worked examples that investigate associations between genetic variation at or near the Alcohol dehydrogenase (Adh) locus and Adh activity in Drosophila melanogaster, and associations between genetic variation at or near some apolipoprotein loci and various lipid phenotypes in a human population.  相似文献   

11.
The fragile X syndrome is the most common cause of familial mental retardation and is characterized by a fragile site at the end of the long arm of the X chromosome. The unusual genetics and cytogenetics of this X-linked condition make genetic counseling difficult. DNA studies were of limited value in genetic counseling, because the nearest polymorphic DNA loci had recombination fractions of 12% or more with the fragile X mutation, FRAXA. Five polymorphic loci have recently been described in this region of the X chromosome. The positions of these loci in relation to FRAXA were defined in a genetic linkage study of 112 affected families. The five loci--DXS369, DXS297, DXS296, IDS, and DXS304--had recombination fractions of 4% or less with FRAXA. The closest locus, DXS296, was distal to FRAXA and had a recombination fraction of 2%. The polymorphisms at these loci can be detected in DNA enzymatically digested with a limited number of restriction endonucleases. A strategy for DNA studies which is based on three restriction endonucleases and on five probes will detect one or more of these polymorphisms in 94% of women. This strategy greatly increases the utility of DNA studies in providing genetic advice to families with the fragile X syndrome.  相似文献   

12.
Recombinant populations were the basis for Mendel's first genetic experiments and continue to be key to the study of genes, heredity, and genetic variation today. Genotyping several hundred thousand loci in a single assay by hybridizing genomic DNA to oligonucleotide arrays provides a powerful technique to improve precision linkage mapping. The genotypes of two accessions of Arabidopsis were compared by using a 400,000 feature exon-specific oligonucleotide array. Around 16,000 single feature polymorphisms (SFPs) were detected in ~8,000 of the ~26,000 genes represented on the array. Allelic variation at these loci was measured in a recombinant inbred line population, which defined the location of 815 recombination breakpoints. The genetic linkage map had a total length of 422.5 cM, with 676 informative SFP markers representing intervals of ~0.6 cM. One hundred fifteen single gene intervals were identified. Recombination rate, SFP distribution, and segregation in this population are not uniform. Many genomic regions show a clustering of recombination events including significant hot spots. The precise haplotype structure of the recombinant population was defined with unprecedented accuracy and resolution. The resulting linkage map allows further refinement of the hundreds of quantitative trait loci identified in this well-studied population. Highly variable recombination rates along each chromosome and extensive segregation distortion were observed in the population.  相似文献   

13.
Israeli Holstein-Friesian dairy bulls were screened for restriction fragment length polymorphisms by hybridizing cloned DNA probes for bovine growth hormone, for chymosin, and for rat muscle beta-actin to restriction endonuclease-digested DNA immobilized on nitrocellulose filters. The population proved to be polymorphic at the growth hormone locus, with evidence consistent with the phenotypes being inherited in allelic fashion. A low level of polymorphism was also observed at one of the beta-actin gene family loci. The chymosin locus was monomorphic with the restriction enzymes utilized. The results illustrate the power of restriction fragment length polymorphism methodology in visualizing genetic variability in dairy cattle populations.  相似文献   

14.
We have studied genetic variation at 30-32 loci coding for enzymes in natural populations of five species of Drosophila. The average proportion of heterozygous loci per individual is 17.7 +/- 0.4%. The average proportion of polymorphic loci per population is 69.2 +/- 2.6% or 49.8 +/- 2.2%, depending on what criterion of polymorphism is used. The following generalizations are advanced: (1) The amount of genetic polymorphism varies considerably from locus to locus. (2) At a given locus, populations of the same species are very similar in the amount and pattern of genetic variation. (3) However, at some loci large differences sometimes occur between local populations of the same species. (4) The amount of variation at a given locus is approximately the same in all five species. (5) When different species are compared, the pattern of the variation is either essentially identical or totally different at a majority of loci. We have tested the hypothesis that protein polymorphisms are selectively neutral by examining four predictions derived from the hypothesis. Our results are at variance with every one of the predictions. We have measured the amount of genetic differentiation, D, between taxa of various degrees of evolutionary divergence. The average value of D is 0.033 for local populations, 0.228 for subspecies, 0.226 for semispecies, 0.538 for sibling species, and 1.214 for morphologically distinguishable species. Our results indicate that a substantial degree of genetic differentiation (22.8 allelic substitutions for every 100 loci) occurs between allopatric populations that have diverged to the point where they might become different species if they were to become sympatric. However, very little additional genetic change is required for the development of complete reproductive isolation. After the speciation process is completed, species continue to diverge genetically from each other.  相似文献   

15.
Pine cones that remain closed and retain seeds until fire causes the cones to open (cone serotiny) represent a key adaptive trait in a variety of pine species. In lodgepole pine, there is substantial geographical variation in serotiny across the Rocky Mountain region. This variation in serotiny has evolved as a result of geographically divergent selection, with consequences that extend to forest communities and ecosystems. An understanding of the genetic architecture of this trait is of interest owing to the wide-reaching ecological consequences of serotiny and also because of the repeated evolution of the trait across the genus. Here, we present and utilize an inexpensive and time-effective method for generating population genomic data. The method uses restriction enzymes and PCR amplification to generate a library of fragments that can be sequenced with a high level of multiplexing. We obtained data for more than 95,000 single nucleotide polymorphisms across 98 serotinous and nonserotinous lodgepole pines from three populations. We used a Bayesian generalized linear model (GLM) to test for an association between genotypic variation at these loci and serotiny. The probability of serotiny varied by genotype at 11 loci, and the association between genotype and serotiny at these loci was consistent in each of the three populations of pines. Genetic variation across these 11 loci explained 50% of the phenotypic variation in serotiny. Our results provide a first genome-wide association map of serotiny in pines and demonstrate an inexpensive and efficient method for generating population genomic data.  相似文献   

16.
Lobuglio KF  Taylor JW 《Mycologia》2002,94(5):772-780
Population genetic analyses of the mycorrhizal fungus Cenococcum geophilum were conducted to test for a clonal or recombining population structure. Multilocus genotypes based on polymorphisms in 9 loci, identified in this study by PCR-SSCP techniques, were obtained for two populations. Genotypic variation occurred on a fine scale because unique genotypes were identified at most every transect point, and in some cases occurred even within one soil sample (equivalent to about a 500 mL volume). The largest genet observed occurred over a 30 meter transect space. The two population genetic methods employed to distinguish between clonality and recombination, (1) Index of Association; and (2) "Parsimony Tree Length Permutation Test" (PTLPT), could not reject the null hypothesis of recombination in either population. Wright's Fst, as estimated by theta, was used to examine gene flow between the two populations based on allele frequencies. Two of the nine loci had theta values that were not significantly different from what one would expect for the null hypothesis of panmixia. However, the other seven loci were consistent with reduced gene flow. The theta value for the Fisher combined probability (combining all 9 loci) was significant and indicated that there was genetic differentiation between these two populations.  相似文献   

17.
Body size is a classic quantitative trait with evolutionarily significant variation within many species. Locating the alleles responsible for this variation would help understand the maintenance of variation in body size in particular, as well as quantitative traits in general. However, successful genome-wide association of genotype and phenotype may require very large sample sizes if alleles have low population frequencies or modest effects. As a complementary approach, we propose that population-based resequencing of experimentally evolved populations allows for considerable power to map functional variation. Here, we use this technique to investigate the genetic basis of natural variation in body size in Drosophila melanogaster. Significant differentiation of hundreds of loci in replicate selection populations supports the hypothesis that the genetic basis of body size variation is very polygenic in D. melanogaster. Significantly differentiated variants are limited to single genes at some loci, allowing precise hypotheses to be formed regarding causal polymorphisms, while other significant regions are large and contain many genes. By using significantly associated polymorphisms as a priori candidates in follow-up studies, these data are expected to provide considerable power to determine the genetic basis of natural variation in body size.  相似文献   

18.
The locus for Friedreich ataxia (FRDA), a severe neurodegenerative disease, is tightly linked to markers D9S5 and D9S15, and analysis of rare recombination events has suggested the order cen–FRDA–D9S5–D9S15–qter. We report here the construction of a YAC contig extending 800 kb centromeric to D9S5 and the isolation of five new microsatellite markers from this region. In order to map these markers with respect to the FRDA locus, all within a 1-cM confidence interval, we sought to increase the genetic information of available FRDA families by considering homozygosity by descent and association with founder haplotypes in isolated populations. This approach allowed us to identify one phase-known recombination and one probable historic recombination on haplotypes from Réunion Island patients, both of which place three of the five markers proximal to FRDA. This represents the first identification of close FRDA flanking markers on the centromeric side. The two other markers allowed us to narrow the breakpoint of a previously identified distal recombination that is >180 kb from D9S5 (26P). Taken together, the results place the FRDA locus in a 450-kb interval, which is small enough for direct search of candidate genes. A detailed rare cutter restriction map and a cosmid contig covering this interval were constructed and should facilitate the search of genes in this region.  相似文献   

19.
Summary DNA analysis of the - and -globin gene clusters has revealed substantial variability between individuals and populations. As well as restriction enzyme site and length polymorphisms, variation in gene copy number and type is observed. Because of this extensive polymorphism DNA analysis offers a highly informative method of studying genetic affinities between human populations. Haplotypes, consisting of a set of restriction enzyme polymorphisms distributed along the cluster, have been developed for both loci. Analysis of the molecular basis of numerous -thalassaemia alleles has revealed, in general, different sets of mutations in different populations, indicating that these postdate the racial divergence. Recent microepidemiological studies on the distribution of -thalassaemia support the hypothesis that this condition, like the {ie16-1}, has been selected because it confers protection against malaria. Population-specific DNA polymorphisms at these and other loci promise to be of considerable value to genetic anthropology.  相似文献   

20.
We have used three different methods to map the human liver/bone/kidney alkaline phosphatase (ALPL) locus: (1) Southern blot analysis of DNA derived from a panel of human-rodent somatic cell hybrids; (2) in situ hybridization to human chromosomes; and (3) genetic linkage analysis. Our results indicate that the ALPL locus maps to human chromosome bands 1p36.1-p34 and is genetically linked to the Rh (maximum lod score of 15.66 at a recombination value of 0.10) and fucosidase A (maximum lod score of 8.24 at a recombination value of 0.02) loci. These results, combined with restriction fragment length polymorphisms identified by ALPL DNA probes, provide a useful marker for gene mapping studies involving the short arm of chromosome 1. In addition, our results help to elucidate further the structure and evolution of the human alkaline phosphatase multigene enzyme family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号