首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. 2-Hydroxypropylmercapturic acid, i.e. N-acetyl-S-(2-hydroxypropyl)-l-cysteine, has been isolated, as the dicyclohexylammonium salt, from the urine of rats dosed with 1-bromopropane. 2. The formation of the same metabolite from 1-chloropropane, 1-iodopropane, 1,2-epoxypropane and 1-chloropropan-2-ol has been demonstrated by chromatographic examination of the urine excreted by rats after they had been dosed with these compounds. 3. (+)- and (-)-Dicyclohexylammonium 2-hydroxypropylmercapturate have been prepared by fractional crystallization of the mixture of isomers obtained by two methods: the reaction of 1,2-epoxypropane with l-cysteine followed by acetylation, and the reduction of 2-oxopropylmercapturic acid. 4. The following compounds have also been prepared: S-(3-hydroxypropyl)-l-cysteine, (+)- and (-)-S-(2-hydroxypropyl)-l-cysteine, dicyclohexylammonium 3-hydroxypropylmercapturate, (+)- and (-)-dicyclohexylammonium 2-hydroxy-1-methylethylmercapturate, and (+)- and (-)-dicyclohexylammonium 1-(ethoxycarbonyl)ethylmercapturate.  相似文献   

2.
1. 3-Hydroxypropylmercapturic acid, i.e. N-acetyl-S-(3-hydroxypropyl)-l-cysteine, was isolated, as its dicyclohexylammonium salt, from the urine of rats after the subcutaneous injection of each of the following compounds: allyl alcohol, allyl formate, allyl propionate, allyl nitrate, acrolein and S-(3-hydroxypropyl)-l-cysteine. 2. Allylmercapturic acid, i.e. N-acetyl-S-allyl-l-cysteine, was isolated from the urine of rats after the subcutaneous injection of each of the following compounds: triallyl phosphate, sodium allyl sulphate and allyl nitrate. The sulphoxide of allylmercapturic acid was detected in the urine excreted by these rats. 3. 3-Hydroxypropylmercapturic acid was identified by g.l.c. as a metabolite of allyl acetate, allyl stearate, allyl benzoate, diallyl phthalate, allyl nitrite, triallyl phosphate and sodium allyl sulphate. 4. S-(3-Hydroxypropyl)-l-cysteine was detected in the bile of a rat dosed with allyl acetate.  相似文献   

3.
The metabolism of S-methyl-l-cysteine   总被引:1,自引:1,他引:0  
1. Methylsulphinylacetic acid, 2-hydroxy-3-methylsulphinylpropionic acid and methylmercapturic acid sulphoxide (N-acetyl-S-methyl-l-cysteine S-oxide) were isolated as their dicyclohexylammonium salts from the urine of rats after they had been dosed with S-methyl-l-cysteine. 2. A fourth sulphoxide was isolated but not identified. 3. The excretion of sulphate in the urine of rats dosed with S-methyl-l-cysteine was measured. 4. The metabolism of S-methyl-l-cysteine by the hamster and guinea pig was examined chromatographically. 5. The preparation of the following compounds is reported: (−)-dicyclohexylammonium methyl-mercapturate sulphoxide; the dicyclohexylammonium salts of the optically inactive forms of 2-hydroxy-3-methylthiopropionic acid, 2-hydroxy-3-methyl-sulphinylpropionic acid and methylsulphinylacetic acid.  相似文献   

4.
Some metabolites of 1-bromobutane in the rabbit and the rat   总被引:2,自引:2,他引:0  
1. Rabbits and rats dosed with 1-bromobutane excrete in urine, in addition to butylmercapturic acid, (2-hydroxybutyl)mercapturic acid, (3-hydroxybutyl)mercapturic acid and 3-(butylthio)lactic acid. 2. Although both species excrete both the hydroxybutylmercapturic acids, only traces of the 2-isomer are excreted by the rabbit. The 3-isomer has been isolated from rabbit urine as the dicyclohexylammonium salt. 3. 3-(Butylthio)lactic acid is formed more readily in the rabbit; only traces are excreted by the rat. 4. Traces of the sulphoxide of butylmercapturic acid have been found in rat urine but not in rabbit urine. 5. In the rabbit about 14% and in the rat about 22% of the dose of 1-bromobutane is excreted in the form of the hydroxymercapturic acids. 6. Slices of rat liver incubated with S-butylcysteine or butylmercapturic acid form both (2-hydroxybutyl)mercapturic acid and (3-hydroxybutyl)mercapturic acid, but only the 3-hydroxy acid is formed by slices of rabbit liver. 7. S-Butylglutathione, S-butylcysteinylglycine and S-butylcysteine are excreted in bile by rats dosed with 1-bromobutane. 8. Rabbits and rats dosed with 1,2-epoxybutane excrete (2-hydroxybutyl)mercapturic acid to the extent of about 4% and 11% of the dose respectively. 9. The following have been synthesized: N-acetyl-S-(2-hydroxybutyl)-l-cysteine [(2-hydroxybutyl)mercapturic acid] and N-acetyl-S-(3-hydroxybutyl)-l-cysteine [(3-hydroxybutyl)mercapturic acid] isolated as dicyclohexylammonium salts, N-toluene-p-sulphonyl-S-(2-hydroxybutyl)-l-cysteine, S-butylglutathione and N-acetyl-S-butylcysteinyl-glycine ethyl ester.  相似文献   

5.
1. (+)-n-Propylmercapturic acid sulphoxide, i.e. (+)-N-acetyl-S-n-propyl-l-cysteine S-oxide, was prepared as the dicyclohexylammonium salt, (-)-n-propyl-mercapturic acid sulphoxide was prepared as the free acid, and S-isopropyl-l-cysteine and isopropylmercapturic acid were also prepared. 2. The metabolism of 1- and 2-bromopropane was studied by radiochromatographic examination of the urine excreted by rats that had been fed with a diet containing (35)S-labelled yeast and then injected subcutaneously with these compounds. In addition to n-propyl-mercapturic acid and 2-hydroxypropylmercapturic acid, the excretion of which has already been reported, n-propylmercapturic acid sulphoxide was shown to be a metabolite of 1-bromopropane. Sulphur-containing metabolites of 2-bromopropane, if present in the urine at all, were there in very small amounts. 3. n-Propylmercapturic acid and isopropylmercapturic acid were isolated from the urine of rats that had been injected subcutaneously with S-n-propyl-l-cysteine and S-isopropyl-l-cysteine respectively.  相似文献   

6.
The metabolism of benzyl isothiocyanate and its cysteine conjugate.   总被引:8,自引:0,他引:8       下载免费PDF全文
1. The corresponding cysteine conjugate was formed when the GSH (reduced glutathione) or cysteinylglycine conjugates of benzyl isothiocyanate were incubated with rat liver or kidney homogenates. When the cysteine conjugate of benzyl isothiocyanate was similarly incubated in the presence of acetyl-CoA, the corresponding N-acetylcysteine conjugate (mercapturic acid) was formed. 2. The non-enzymic reaction of GSH with benzyl isothiocyanate was rapid and was catalysed by rat liver cytosol. 3. The mercapturic acid was excreted in the urine of rats dosed with benzyl isothiocyanate or its GSH, cysteinyl-glycine or cysteine conjugate, and was isolated as the dicyclohexylamine salt. 4. An oral dose of the cysteine conjugate of [14C]benzyl isothiocyanate was rapidly absorbed and excreted by rats and dogs. After 3 days, rats had excreted a mean of 92.4 and 5.6% of the dose in the urine and faeces respectively, and dogs had excreted a mean of 86.3 and 13.2% respectively. 5. After an oral dose of the cystein conjugate of [C]benzyl isothiocyanate, the major 14C-labelled metabolite in rat urine was the corresponding mercapturic acid (62% of the dose), whereas in dog urine it was hippuric acid (40% of the dose). 5. Mercapturic acid biosynthesis may be an important route of metabolism of certain isothiocyanates in some mammalian species.  相似文献   

7.
1. 2-Amino-1-naphthyl hydrogen sulphate can be rapidly isolated from the urine of dogs dosed with 2-naphthylamine by precipitation with cetylpyridinium bromide. 2. No evidence was obtained for the presence of 2-naphthylhydroxylamine-O-sulphonic acid, noteworthy as a possible source of the carcinogens, 2-naphthylhydroxylamine and 2-amino-1-naphthol. 3. Treatment of neutral persulphate oxidations of 2-naphthylamine with the reagent gave only the cetylpyridinium salt of 2-amino-1-naphthyl hydrogen sulphate.  相似文献   

8.
1. The metabolism of cis- and trans-acenaphthene-1,2-diol has been studied after the administration of these compounds to rats by subcutaneous injection and by stomach tube. 2. 1,8-Naphthalic acid has been isolated as its anhydride from the urine of the dosed animals. 3. A spectrophotometric method for the determination of free and conjugated 1,8-naphthalic acid in urine has been developed and has been used in the study of the metabolism of the acenaphthene-1,2-diols. 4. The urine of rats dosed with cis-acenaphthene-1,2-diol by subcutaneous injection was shown by paper chromatography to contain both cis- and trans-acenaphthene-1,2-diol. Similar findings were obtained after the subcutaneous injection of trans-acenaphthene-1,2-diol.  相似文献   

9.
The metabolism of cis- and trans-indane-1,2-diol   总被引:3,自引:3,他引:0       下载免费PDF全文
1. The metabolism of cis-indane-1,2-diol, trans-indane-1,2-diol, indene epoxide and 2-hydroxyindan-1-one in rats has been studied. The substances were administered to the animals by subcutaneous injection. 2. The urine of the dosed animals was examined for the presence of free and conjugated cis- and trans-dihydrodiols, and for each compound it was possible to isolate both cis and trans forms of indane-1,2-diol from the urine. 3. The urines were also examined by paper chromatography for ketones and two ketonic metabolites were detected in the urine of rats dosed separately with cis-indane-1,2-diol, trans-indane-1,2-diol, 2-hydroxyindan-1-one and indene epoxide. The ketones were provisionally identified as (1-oxoindan-2-yl glucosid)uronic acid and 1-oxoindan-2-yl sulphuric acid. 4. (1-Oxoindan-2-yl glucosid)uronic acid was isolated as the 2,4-dinitrophenylhydrazone from the urine of rats dosed separately with cis-indane-1,2-diol and trans-indane-1,2-diol. 5. Possible mechanisms for the interconversion of cis- and trans-indane-1,2-diol are discussed.  相似文献   

10.
1. A single oral dose of either [(14)C]Prefix or 2,6-dichlorobenzo[(14)C]nitrile to rats is almost entirely eliminated in 4 days: 84.8-100.5% of (14)C from [(14)C]Prefix is excreted, 67.3-79.7% in the urine, and 85.8-97.2% of (14)C from 2,6-dichlorobenzo-[(14)C]nitrile is excreted, 72.3-80.7% in the urine. Only 0.37+/-0.03% of the dose of [(14)C]Prefix and 0.25+/-0.03% of the dose of 2,6-dichlorobenzo[(14)C]nitrile are present in the carcass plus viscera after removal of the gut. Rats do not show sex differences in the pattern of elimination of the respective metabolites of the two herbicides. The rates of elimination of (14)C from the two compounds in the 24hr. and 48hr. urines are not significantly different (P >0.05) from one another. 2. After oral administration to dogs, 85.9-106.1% of (14)C from [(14)C]Prefix is excreted, 66.6-80.9% in the urine, and 86.8-92.5% of (14)C from 2,6-dichlorobenzo[(14)C]nitrile is excreted, 60.0-70.1% in the urine. Dogs do not show sex differences in the pattern of eliminating the metabolites of either Prefix or 2,6-dichlorobenzonitrile. 3. Dogs and rats do not show species differences in the patterns of elimination of the two herbicides. 4. Prefix and 2,6-dichlorobenzonitrile are completely metabolized; unchanged Prefix and 2,6-dichlorobenzonitrile are absent from the urine and faeces, and from the carcasses when elimination is complete. In the hydrolysed urine of rats dosed with either [(14)C]Prefix or 2,6-dichlorobenzo[(14)C]nitrile, 2,6-dichloro-3-hydroxybenzonitrile accounts for approx. 42% of the (14)C, a further 10-11% is accounted for by 2,6-dichlorobenzamide, 2,6-dichlorobenzoic acid, 2,6-dichloro-3- and -4-hydroxybenzoic acid and 2,6-dichloro-4-hydroxybenzonitrile collectively, and 25-30% by six polar constituents, of which two are sulphur-containing amino acids. 5. In the unhydrolysed urines of rats dosed with either [(14)C]Prefix or 2,6-dichlorobenzo[(14)C]nitrile, there are present free 2,6-dichloro-3- and -4-hydroxybenzonitrile, their glucuronide conjugates, ester glucuronides of the principal aromatic acids that are present in the hydrolysed urines, and two sulphur-containing metabolites analogous to mercapturic acids or premercapturic acids. 6. Prefix is thus extensively transformed into 2,6-dichlorobenzonitrile: R.CS.NH(2)-->R.CN+H(2)S, where R=C(6)H(3)Cl(2). However, the competitive reaction: R.CS.NH(2)+H(2)O-->R.CO.NH(2)+H(2)S takes place to a very limited extent.  相似文献   

11.
1. 2-Naphthylhydroxylamine and 2-nitrosonaphthalene were present in urine of dogs but not of guinea pigs, hamsters, rabbits or rats dosed with 2-naphthylamine. N-Acetyl-2-naphthylhydroxylamine and its O-sulphonic acid and O-glucosiduronic acid were not detected in the urine of any of these species. 2. Bile from rats dosed with 2-naphthylamine contained (2-naphthylamine N-glucosid)uronic acid and 6- and 5,6-substituted derivatives of 2-acetamidonaphthalene. 2-Amino-1-naphthyl and 2-acetamido-1-naphthyl derivatives, 2-naphthylhydroxylamine and its N-acetyl derivative or conjugates of these were not detected. Bile from a dog dosed with 2-naphthylamine contained no 2-amino-1-naphthyl derivatives. 3. 2-Naphthylhydroxylamine was metabolized by the dog, rat and guinea pig to the same products as those formed by these species from 2-naphthylamine. Rabbits formed mainly 2-amino-1-naphthyl derivatives; these are minor metabolites of 2-naphthylamine in this species. 4. (N-Acetyl-2-naphthylhydroxylamine O-glucosid)uronic acid was excreted in the urine and the bile of rats and in the urine of guinea pigs and rabbits dosed with N-acetyl-2-naphthylhydroxylamine. 5. After the administration of 2-acetamidonaphthalene, (N-acetyl-2-naphthylhydroxylamine O-glucosid)uronic acid was detected in the urine of dogs, but not in the urine of other species. The dog excreted an acid-labile cysteine derivative of 2-acetamidonaphthalene, but only traces of the corresponding mercapturic acid. 6. After dosing with N-acetyl-2-naphthylhydroxylamine-O-sulphonic acid, rats excreted derivatives of 2-amino-1-naphthol. 7. 2-Nitrosonaphthalene, N-acetyl-2-naphthylhydroxylamine, N-acetyl-2-naphthylhydroxylamine-O-sulphonic acid, 2-naphthylhydroxylamine-N-sulphonic acid, N-benzyloxycarbonyl-2-naphthylhydroxylamine and N-benzyloxycarbonyl-2-naphthylhydroxylamine-O-sulphonic acid were synthesized.  相似文献   

12.
1. Benzylmercapturic acid and hippuric acid were isolated from the urine of rats that had been injected subcutaneously with benzyl acetate. 2. 1-Menaphthylmercapturic acid and 1-naphthoic acid were isolated from the urine of rats after the subcutaneous injection of each of the following compounds: 1-menaphthyl alcohol and its acetate, propionate, butyrate and benzoate esters. 3. A quantitative method for determining 1-menaphthylmercapturic acid in urine was developed and used to measure the excretion of this compound in the urine of rats in the 4-day period after the subcutaneous injection of 1-menaphthyl alcohol and its acetate, propionate, butyrate and benzoate esters. 4. Chromatographic evidence was obtained for the presence of S-(1-menaphthyl)glutathione and S-(1-menaphthyl)-l-cysteine in bile collected from rats with cannulated bile ducts after the animals had been injected subcutaneously with each of the following compounds: S-(1-menaphthyl)glutathione, 1-menaphthyl acetate, propionate and butyrate. 5. Benzylmercapturic acid and 1-menaphthylmercapturic acid were isolated from the urine of rats that had been injected with sodium benzyl sulphate and sodium 1-menaphthyl sulphate respectively.  相似文献   

13.
The effect of methanol extract and protocatechuic acid from the leaves of Zanthoxylum piperitum on lipid peroxidation and drug metabolizing enzymes were investigated in the liver of bromobenzene-treated rats. The methanol extract and protocatechuic acid reduced the level of lipid peroxide induced by bromobenzene. The methanol extract and protocatechuic acid reduced the activity of aniline hydroxylase that had been increased by bromobenzene, while did not affect the activities of aminopyrine N-demethylase and glutathione S-transferase. The methanol extract and compound effectively restored the activity of epoxide hydrolase which had been decreased by bromobenzene. These results may suggest that the methanol extract of Z. piperitum and protocatechuic acid prevented lipid peroxidation by reducing the activity of aniline hydroxylase, an epoxide-producing enzyme, and by enhancing the activity of epoxide hydrolase, an epoxide-removing enzyme, in rats that had been intoxicated with bromobenzene.  相似文献   

14.
We present here a definitive metabonomic analysis in order to detect novel biomarker and metabolite information, implicating specific putative protein targets in the toxicological mechanism of bromobenzene-induced centrilobular hepatic necrosis. Male Han-Wistar rats were dosed with bromobenzene (1.5 g/kg, n = 25) and blood plasma, urine and liver samples were collected for NMR and magic angle spinning (MAS) NMR spectroscopy at various time-points postdose, with histopathology and clinical pathology performed in parallel. Liver samples were analyzed by 600 MHz 1H MAS NMR techniques and the resultant spectra were correlated to sequential 1H NMR measurements in urine and blood plasma using pattern recognition methods. 1D 1H NMR spectra were data-reduced and analyzed using principal components analysis (PCA) to show the time-dependent biochemical variations induced by bromobenzene toxicity. In addition to a holistic view of the effect of hepatic toxicity on the metabolome, a number of putative protein targets of bromobenzene and its metabolites were identified including those enzymes of the glutathione cycle, exemplified by the presence of a novel biomarker, 5-oxoproline, in liver tissue, blood plasma, and urine. As such, this work establishes the importance of metabonomics technology in resolving the mechanistic complexity of drug toxicity as well as the benefits of frontloading this approach in drug safety evaluation and biomarker discovery.  相似文献   

15.
The effect of a cysteine prodrug, L-2-oxothiazolidine-4-carboxylic acid (OTCA), on certain aspects of the metabolism and toxicity of bromobenzene administered acutely to mice was investigated by (i) characterizing the influence of OTCA on the metabolic profile of low and high bromobenzene dose at 0-6, 6-12, and 12-24 h, (ii) determining the effective doses range and administration time for OTCA, as well as the optimum period for urine sampling; and (iii) measuring the efficacy of OTCA for protection against bromobenzene induced toxicity. Coadministration of OTCA and bromobenzene enhanced the urinary excretion of mercapturic acid and phenolic metabolites, during 6-12 h, by approximately 152 and 193%, respectively. Maximum efficacy was observed when OTCA (16.0 mmol/kg) was administered concomitantly with bromobenzene (4.0 mmol/kg). Finally, OTCA administration was found to afford substantial protection against elevation of plasma transaminases used as indices of bromobenzene-induced hepatotoxicity. N-acetylcysteine, another cysteine prodrug, had essentially similar effects on the metabolism and toxicity of bromobenzene. Thus, administration of cysteine prodrugs enhances the urinary excretion of several metabolites of bromobenzene and affords protection against bromobenzene-induced hepatotoxicity.  相似文献   

16.
Induction of hepatic heme oxygenase activity by bromobenzene   总被引:2,自引:0,他引:2  
Hepatic heme oxygenase, an enzyme which converts heme to carbon monoxide and bile pigment in vitro, is inducible by heme but also by large “toxic” doses of such nonheme substances as hormones, endotoxin, and heavy metal ions. When we gave rats a single hepatotoxic dose of allyl alcohol, ethionine, acetaminophen, furosemide, or endotoxin, hepatic heme oxygenase activity rose modestly (two- to fivefold) after 20 h. In contrast, administration of bromobenzene (5 mmol/kg) induced heme oxygenase in the liver an average of 15-fold after 20 h but was without effect on the enzyme in the kidney or spleen. The change in heme oxygenase was accompanied by a loss in cytochrome P-450 concentration and, in rats labeled with 5-δ-amino[14C]levulinic acid, an increased rate of degradation of hepatic [14C]heme to 14CO. Induction of heme oxygenase by bromobenzene was blocked by cycloheximide, an inhibitor of protein synthesis, but not by actinomycin D, an inhibitor of RNA synthesis. This suggests that bromobenzene stimulates de novo enzyme synthesis at the step of translation. Subtoxic doses of bromobenzene (less than 1 mmol/kg) gave proportionately greater induction of heme oxygenase. Furthermore, induction of the enzyme remained unaffected when bromobenzene hepatotoxicity was blocked by pretreatment of rats with SKF-525A, 3-methylcholanthrene, or cysteine (which supplements liver sulfhydryl content), or when hepatotoxicity was enhanced by pretreatment with phenobarbital or with diethylmaleate (which depletes hepatic glutathione). These data suggest that with induction of heme oxygenase by bromobenzene, neither liver cell necrosis nor alteration in hepatic sulfhydryl metabolism is indispensible. The latter characteristic differs from induction of the enzyme by metal ions in which depletion of sulfhydryl-containing constituents has been thought to be essential. We conclude that bromobenzene is a novel inducer of heme oxygenase activity in the liver, differing from other nonheme substances in potency and specificity for the liver, and in utilizing mechanism(s) which require neither production of hepatotoxicity, depletion of hepatic glutathione, nor sensitivity to actinomycin D.  相似文献   

17.
Freshly isolated rat hepatocytes contained a high level (30–40 nmol/106 cells) of reduced glutathione (GSH) which decreased steadily upon incubation in an amino acid containing medium lacking cysteine and methionine. This decrease in GSH level was prevented, and turned into a slight increase, when either cysteine, N-acetylcysteine, or methionine was also present in the medium. The amino acid uptake into hepatocytes was more rapid with cysteine than with methionine. Cystine was not taken up, or taken up very slowly, by the cells and could not be used to prevent the decrease in GSH level which occurred in the absence of cysteine and methionine. The level of GSH in hepatocytes freshly isolated from rats pretreated with diethylmaleate was markedly decreased (to ~5 nmol/106 cells) but increased rapidly upon incubation of the cells in a medium containing amino acids including either cysteine, N-acetylcysteine, or methionine. Again, cysteine was taken up into the cells more rapidly than methionine. The rate of uptake of cysteine was moderately enhanced in hepatocytes with a lowered level of intracellular GSH as compared to cells with normal GSH concentration. Exclusion of glutamate and/or glycine from the medium did not markedly affect the rate of resynthesis of GSH by hepatocytes incubated in the presence of exogenously added cysteine or methionine. Incubation of hepatocytes with bromobenzene in an amino acid-containing medium lacking cysteine and methionine resulted in accelerated cell damage. Addition of either cysteine, N-acetylcysteine, or methionine to the medium caused a decrease in bromobenzene toxicity. The protective effect was dependent, however, on the time of addition of the amino acid to the incubate; e.g., the effect on bromobenzene toxicity was greatly reduced when either cysteine or methionine was added after 1 h of preincubation of the hepatocytes with bromobenzene as compared to addition at zero time. This decrease in protective effect in bromobenzene-exposed cells was related to a similar decrease in the rate of uptake of cysteine and methionine into hepatocytes preincubated with bromobenzene. The rate of uptake, and incorporation into cellular protein, of leucine was also markedly inhibited in hepatocytes preincubated with bromobenzene. In contrast, there was no measurable change in the rate of release of leucine from cellular protein as a result of incubation of hepatocytes with bromobenzene. It is concluded that the presence of cysteine, N-acetylcysteine, or methionine in the medium protects hepatocytes from bromobenzene toxicity by providing intracellular cysteine for GSH biosynthesis and suggested that an inhibitory effect on amino acid uptake may contribute to the cytotoxicity of bromobenzene in hepatocytes.  相似文献   

18.
The metabolic fate of [1-14-C]hexadecylsulphate and hexadecyl[35-S]sulphate, administered intravenously as the sodium and trimethylammonium salt to dogs and orally as the erythromycin salt to dogs, rats and humans, was studied. Studies with rats indicated that the compounds were well absorbed and rapidly excreted in the urine. However, after oral administration of the 14-C-and 35-S-labelled hexadecyl sulphate erythromycin salt to dogs, considerable amounts of radioactivity were excreted in the faeces as unmetabolized hexadecyl sulphate. Studies with two humans showed that orally administered erythromycin salt of [1-14C]hexadecyl sulphate was well absorbed in one person but poorly absorbed in the other. Radioactive metabolites in urine were separated by t.l.c. in two solvent systems. The main metabolite of hexadecyl sulphate in the dog, rat and human was identified as the sulphate ester of 4-hydroxybutyric acid. In addition, psi-[14-C]butyrolactone as a minor metabolic product of [1-14-C]hexadecyl sulphate was also isolated from the urine of rat, dog and man. However, there was still another metabolite in dog urine, which comprised about 20% of the total urinary radioactivity and carried both 14-C and 35-S labels. This metabolite was absent from rat urine. The metabolite in dog urine was isolated and subsequently identified by t.l.c. and g.l.c. and by isotope-dilution experiments as the sulphate ester of glycollic acid. Small amounts (about 5% of the total recovered radioactivity in excreta) of labelled glycollic acid sulphate were also found in human urine after ingestion of erythromycin [1-14-C]hexadecyl sulphate.  相似文献   

19.
Hepatocytes freshly isolated from diethylmaleate-treated rats exhibited a markedly decreased concentration of reduced glutathione (GSH) which increased to the level present in hepatocytes from nontreated rats upon incubation in a complete medium. When bromobenzene was present in the medium, however, this increase in GSH concentration upon incubation was reversed and a further decrease occurred that resulted in GSH depletion and cell death. This was prevented by metyrapone, an inhibitor of the cytochrome P-450-linked metabolism of bromobenzene. Bromobenzene metabolism in hepatocytes was accompanied by a fraction of metabolites covalently binding to cellular proteins. The size of this fraction, relative to the amount of total metabolites, was increased in hepatocytes isolated from diethylmaleate-treated rats and in hepatocytes from phenobarbital-treated rats incubated with bromobenzene in the presence of 1,2-epoxy-3,3,3-trichloropropane, an inhibitor of microsomal epoxide hydrase which, however, also acted as a GSH-depleting agent. In addition, the metabolism of bromobenzene by hepatocytes was associated with a marked decrease in various coenzyme levels, including coenzyme A, NAD(H), and NADP(H). Cysteine and cysteamine inhibited the formation of protein-bound metabolites of bromobenzene in microsomes, but did not prevent bromobenzene toxicity in hepatocytes when added at higher concentrations to the incubation medium (containing 0.4 mm cysteine). Methionine, on the other hand, did not cause a significant effect on bromobenzene metabolism in microsomes and prevented toxicity in hepatocytes, presumably by stimulating GSH synthesis and thereby decreasing the amount of reactive metabolites available for interaction with other cellular nucleophiles. It is concluded that, in contrast to hepatocytes with normal levels of GSH, hepatocytes from diethylmaleate-treated rats were sensitive to bromobenzene toxicity under our incubation conditions. In this system, bromobenzene metabolism led to GSH depletion and was associated with a progressive decrease in coenzyme A and nicotinamide nucleotide levels and a moderate increase in the formation of metabolites covalently bound to protein. Methionine was a potent protective agent which probably acted by enhanced GSH synthesis via the formation of cystathionine.  相似文献   

20.
1. The metabolism of iodomethane has been studied after the administration of the compound to rats by subcutaneous injection. 2. The urinary excretion of S-methylcysteine, methylmercapturic acid, methylthioacetic acid and N-(methylthioacetyl)glycine has been demonstrated by paper chromatography. 3. Methylmercapturic acid and N-(methylthioacetyl)glycine have been isolated from the urine of the dosed animals. 4. The methylthio compounds detected represented about 2% of the iodomethane administered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号