首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ko H  Davidian M 《Biometrics》2000,56(2):368-375
The nonlinear mixed effects model is used to represent data in pharmacokinetics, viral dynamics, and other areas where an objective is to elucidate associations among individual-specific model parameters and covariates; however, covariates may be measured with error. For additive measurement error, we show substitution of mismeasured covariates for true covariates may lead to biased estimators for fixed effects and random effects covariance parameters, while regression calibration may eliminate bias in fixed effects but fail to correct that in covariance parameters. We develop methods to take account of measurement error that correct this bias and may be implemented with standard software, and we demonstrate their utility via simulation and application to data from a study of HIV dynamics.  相似文献   

2.
Repeatability (more precisely the common measure of repeatability, the intra‐class correlation coefficient, ICC) is an important index for quantifying the accuracy of measurements and the constancy of phenotypes. It is the proportion of phenotypic variation that can be attributed to between‐subject (or between‐group) variation. As a consequence, the non‐repeatable fraction of phenotypic variation is the sum of measurement error and phenotypic flexibility. There are several ways to estimate repeatability for Gaussian data, but there are no formal agreements on how repeatability should be calculated for non‐Gaussian data (e.g. binary, proportion and count data). In addition to point estimates, appropriate uncertainty estimates (standard errors and confidence intervals) and statistical significance for repeatability estimates are required regardless of the types of data. We review the methods for calculating repeatability and the associated statistics for Gaussian and non‐Gaussian data. For Gaussian data, we present three common approaches for estimating repeatability: correlation‐based, analysis of variance (ANOVA)‐based and linear mixed‐effects model (LMM)‐based methods, while for non‐Gaussian data, we focus on generalised linear mixed‐effects models (GLMM) that allow the estimation of repeatability on the original and on the underlying latent scale. We also address a number of methods for calculating standard errors, confidence intervals and statistical significance; the most accurate and recommended methods are parametric bootstrapping, randomisation tests and Bayesian approaches. We advocate the use of LMM‐ and GLMM‐based approaches mainly because of the ease with which confounding variables can be controlled for. Furthermore, we compare two types of repeatability (ordinary repeatability and extrapolated repeatability) in relation to narrow‐sense heritability. This review serves as a collection of guidelines and recommendations for biologists to calculate repeatability and heritability from both Gaussian and non‐Gaussian data.  相似文献   

3.
Summary .   For longitudinal data, mixed models include random subject effects to indicate how subjects influence their responses over repeated assessments. The error variance and the variance of the random effects are usually considered to be homogeneous. These variance terms characterize the within-subjects (i.e., error variance) and between-subjects (i.e., random-effects variance) variation in the data. In studies using ecological momentary assessment (EMA), up to 30 or 40 observations are often obtained for each subject, and interest frequently centers around changes in the variances, both within and between subjects. In this article, we focus on an adolescent smoking study using EMA where interest is on characterizing changes in mood variation. We describe how covariates can influence the mood variances, and also extend the standard mixed model by adding a subject-level random effect to the within-subject variance specification. This permits subjects to have influence on the mean, or location, and variability, or (square of the) scale, of their mood responses. Additionally, we allow the location and scale random effects to be correlated. These mixed-effects location scale models have useful applications in many research areas where interest centers on the joint modeling of the mean and variance structure.  相似文献   

4.
Summary The rapid development of new biotechnologies allows us to deeply understand biomedical dynamic systems in more detail and at a cellular level. Many of the subject‐specific biomedical systems can be described by a set of differential or difference equations that are similar to engineering dynamic systems. In this article, motivated by HIV dynamic studies, we propose a class of mixed‐effects state‐space models based on the longitudinal feature of dynamic systems. State‐space models with mixed‐effects components are very flexible in modeling the serial correlation of within‐subject observations and between‐subject variations. The Bayesian approach and the maximum likelihood method for standard mixed‐effects models and state‐space models are modified and investigated for estimating unknown parameters in the proposed models. In the Bayesian approach, full conditional distributions are derived and the Gibbs sampler is constructed to explore the posterior distributions. For the maximum likelihood method, we develop a Monte Carlo EM algorithm with a Gibbs sampler step to approximate the conditional expectations in the E‐step. Simulation studies are conducted to compare the two proposed methods. We apply the mixed‐effects state‐space model to a data set from an AIDS clinical trial to illustrate the proposed methodologies. The proposed models and methods may also have potential applications in other biomedical system analyses such as tumor dynamics in cancer research and genetic regulatory network modeling.  相似文献   

5.
In this article, we propose a two-stage approach to modeling multilevel clustered non-Gaussian data with sufficiently large numbers of continuous measures per cluster. Such data are common in biological and medical studies utilizing monitoring or image-processing equipment. We consider a general class of hierarchical models that generalizes the model in the global two-stage (GTS) method for nonlinear mixed effects models by using any square-root-n-consistent and asymptotically normal estimators from stage 1 as pseudodata in the stage 2 model, and by extending the stage 2 model to accommodate random effects from multiple levels of clustering. The second-stage model is a standard linear mixed effects model with normal random effects, but the cluster-specific distributions, conditional on random effects, can be non-Gaussian. This methodology provides a flexible framework for modeling not only a location parameter but also other characteristics of conditional distributions that may be of specific interest. For estimation of the population parameters, we propose a conditional restricted maximum likelihood (CREML) approach and establish the asymptotic properties of the CREML estimators. The proposed general approach is illustrated using quartiles as cluster-specific parameters estimated in the first stage, and applied to the data example from a collagen fibril development study. We demonstrate using simulations that in samples with small numbers of independent clusters, the CREML estimators may perform better than conditional maximum likelihood estimators, which are a direct extension of the estimators from the GTS method.  相似文献   

6.
In many longitudinal studies, it is of interest to characterize the relationship between a time-to-event (e.g. survival) and several time-dependent and time-independent covariates. Time-dependent covariates are generally observed intermittently and with error. For a single time-dependent covariate, a popular approach is to assume a joint longitudinal data-survival model, where the time-dependent covariate follows a linear mixed effects model and the hazard of failure depends on random effects and time-independent covariates via a proportional hazards relationship. Regression calibration and likelihood or Bayesian methods have been advocated for implementation; however, generalization to more than one time-dependent covariate may become prohibitive. For a single time-dependent covariate, Tsiatis and Davidian (2001) have proposed an approach that is easily implemented and does not require an assumption on the distribution of the random effects. This technique may be generalized to multiple, possibly correlated, time-dependent covariates, as we demonstrate. We illustrate the approach via simulation and by application to data from an HIV clinical trial.  相似文献   

7.
Gustafson P 《Biometrics》2007,63(1):69-77
Yin and Ibrahim (2005a, Biometrics 61, 208-216) use a Box-Cox transformed hazard model to acknowledge uncertainty about how a linear predictor acts upon the hazard function of a failure-time response. Particularly, additive and proportional hazards models arise for particular values of the transformation parameter. As is often the case, however, this added model flexibility is obtained at the cost of lessened parameter interpretability. Particularly, the interpretation of the coefficients in the linear predictor is intertwined with the value of the transformation parameter. Moreover, some data sets contain very little information about this parameter. To shed light on the situation, we consider average effects based on averaging (over the joint distribution of the explanatory variables and the failure-time response) the partial derivatives of the hazard, or the log-hazard, with respect to the explanatory variables. First, we consider fitting models which do assume a particular form of covariate effects, for example, proportional hazards or additive hazards. In some such circumstances, average effects are seen to be inferential targets which are robust to the effect form being misspecified. Second, we consider average effects as targets of inference when using the transformed hazard model. We show that in addition to being more interpretable inferential targets, average effects can sometimes be estimated more efficiently than the corresponding regression coefficients.  相似文献   

8.

Background

Faecal egg counts are a common indicator of nematode infection and since it is a heritable trait, it provides a marker for selective breeding. However, since resistance to disease changes as the adaptive immune system develops, quantifying temporal changes in heritability could help improve selective breeding programs. Faecal egg counts can be extremely skewed and difficult to handle statistically. Therefore, previous heritability analyses have log transformed faecal egg counts to estimate heritability on a latent scale. However, such transformations may not always be appropriate. In addition, analyses of faecal egg counts have typically used univariate rather than multivariate analyses such as random regression that are appropriate when traits are correlated. We present a method for estimating the heritability of untransformed faecal egg counts over the grazing season using random regression.

Results

Replicating standard univariate analyses, we showed the dependence of heritability estimates on choice of transformation. Then, using a multitrait model, we exposed temporal correlations, highlighting the need for a random regression approach. Since random regression can sometimes involve the estimation of more parameters than observations or result in computationally intractable problems, we chose to investigate reduced rank random regression. Using standard software (WOMBAT), we discuss the estimation of variance components for log transformed data using both full and reduced rank analyses. Then, we modelled the untransformed data assuming it to be negative binomially distributed and used Metropolis Hastings to fit a generalized reduced rank random regression model with an additive genetic, permanent environmental and maternal effect. These three variance components explained more than 80 % of the total phenotypic variation, whereas the variance components for the log transformed data accounted for considerably less. The heritability, on a link scale, increased from around 0.25 at the beginning of the grazing season to around 0.4 at the end.

Conclusions

Random regressions are a useful tool for quantifying sources of variation across time. Our MCMC (Markov chain Monte Carlo) algorithm provides a flexible approach to fitting random regression models to non-normal data. Here we applied the algorithm to negative binomially distributed faecal egg count data, but this method is readily applicable to other types of overdispersed data.  相似文献   

9.
10.
The potency of antiretroviral agents in AIDS clinical trials can be assessed on the basis of an early viral response such as viral decay rate or change in viral load (number of copies of HIV RNA) of the plasma. Linear, parametric nonlinear, and semiparametric nonlinear mixed‐effects models have been proposed to estimate viral decay rates in viral dynamic models. However, before applying these models to clinical data, a critical question that remains to be addressed is whether these models produce coherent estimates of viral decay rates, and if not, which model is appropriate and should be used in practice. In this paper, we applied these models to data from an AIDS clinical trial of potent antiviral treatments and found significant incongruity in the estimated rates of reduction in viral load. Simulation studies indicated that reliable estimates of viral decay rate were obtained by using the parametric and semiparametric nonlinear mixed‐effects models. Our analysis also indicated that the decay rates estimated by using linear mixed‐effects models should be interpreted differently from those estimated by using nonlinear mixed‐effects models. The semiparametric nonlinear mixed‐effects model is preferred to other models because arbitrary data truncation is not needed. Based on real data analysis and simulation studies, we provide guidelines for estimating viral decay rates from clinical data. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
This article demonstrates the use of mixed effects models for characterizing individual and sample average growth curves based on serial anthropometric data. These models are advancement over conventional general linear regression because they effectively handle the hierarchical nature of serial growth data. Using body weight data on 70 infants in the Born in Bradford study, we demonstrate how a mixed effects model provides a better fit than a conventional regression model. Further, we demonstrate how mixed effects models can be used to explore the influence of environmental factors on the sample average growth curve. Analyzing data from 183 infant boys (aged 3–15 months) from rural South India, we show how maternal education shapes infant growth patterns as early as within the first 6 months of life. The presented analyses highlight the utility of mixed effects models for analyzing serial growth data because they allow researchers to simultaneously predict individual curves, estimate sample average curves, and investigate the effects of environmental exposure variables. Am J Phys Anthropol, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
For many diseases, it is difficult or impossible to establish a definitive diagnosis because a perfect "gold standard" may not exist or may be too costly to obtain. In this paper, we propose a method to use continuous test results to estimate prevalence of disease in a given population and to estimate the effects of factors that may influence prevalence. Motivated by a study of human herpesvirus 8 among children with sickle-cell anemia in Uganda, where 2 enzyme immunoassays were used to assess infection status, we fit 2-component multivariate mixture models. We model the component densities using parametric densities that include data transformation as well as flexible transformed models. In addition, we model the mixing proportion, the probability of a latent variable corresponding to the true unknown infection status, via a logistic regression to incorporate covariates. This model includes mixtures of multivariate normal densities as a special case and is able to accommodate unusual shapes and skewness in the data. We assess model performance in simulations and present results from applying various parameterizations of the model to the Ugandan study.  相似文献   

13.
Wang Y  Ke C  Brown MB 《Biometrics》2003,59(4):804-812
Medical studies often collect physiological and/or psychological measurements over time from multiple subjects, to study dynamics such as circadian rhythms. Under the assumption that the expected response functions of all subjects are the same after shift and scale transformations, shape-invariant models have been applied to analyze this kind of data. The shift and scale parameters provide efficient and interpretable data summaries, while the common shape function is usually modeled nonparametrically, to provide flexibility. However, due to the deterministic nature of the shift and scale parameters, potential correlations within a subject are ignored. Furthermore, the shape of the common function may depend on other factors, such as disease. In this article, we propose shape-invariant mixed effects models. A second-stage model with fixed and random effects is used to model individual shift and scale parameters. A second-stage smoothing spline ANOVA model is used to study potential covariate effects on the common shape function. We apply our methods to a real data set to investigate disease effects on circadian rhythms of cortisol, a hormone that is affected by stress. We find that patients with Cushing's syndrome lost circadian rhythms and their 24-hour means were elevated to very high levels. Patients with major depression had the same circadian shape and phases as normal subjects. However, their 24-hour mean levels were elevated and amplitudes were dampened for some patients.  相似文献   

14.
Diagnostic or screening tests are widely used in medical fields to classify patients according to their disease status. Several statistical models for meta‐analysis of diagnostic test accuracy studies have been developed to synthesize test sensitivity and specificity of a diagnostic test of interest. Because of the correlation between test sensitivity and specificity, modeling the two measures using a bivariate model is recommended. In this paper, we extend the current standard bivariate linear mixed model (LMM) by proposing two variance‐stabilizing transformations: the arcsine square root and the Freeman–Tukey double arcsine transformation. We compared the performance of the proposed methods with the standard method through simulations using several performance measures. The simulation results showed that our proposed methods performed better than the standard LMM in terms of bias, root mean square error, and coverage probability in most of the scenarios, even when data were generated assuming the standard LMM. We also illustrated the methods using two real data sets.  相似文献   

15.
Zhang D  Davidian M 《Biometrics》2001,57(3):795-802
Normality of random effects is a routine assumption for the linear mixed model, but it may be unrealistic, obscuring important features of among-individual variation. We relax this assumption by approximating the random effects density by the seminonparameteric (SNP) representation of Gallant and Nychka (1987, Econometrics 55, 363-390), which includes normality as a special case and provides flexibility in capturing a broad range of nonnormal behavior, controlled by a user-chosen tuning parameter. An advantage is that the marginal likelihood may be expressed in closed form, so inference may be carried out using standard optimization techniques. We demonstrate that standard information criteria may be used to choose the tuning parameter and detect departures from normality, and we illustrate the approach via simulation and using longitudinal data from the Framingham study.  相似文献   

16.

Background

Using suitable error models for gene expression measurements is essential in the statistical analysis of microarray data. However, the true probabilistic model underlying gene expression intensity readings is generally not known. Instead, in currently used approaches some simple parametric model is assumed (usually a transformed normal distribution) or the empirical distribution is estimated. However, both these strategies may not be optimal for gene expression data, as the non-parametric approach ignores known structural information whereas the fully parametric models run the risk of misspecification. A further related problem is the choice of a suitable scale for the model (e.g. observed vs. log-scale).

Results

Here a simple semi-parametric model for gene expression measurement error is presented. In this approach inference is based an approximate likelihood function (the extended quasi-likelihood). Only partial knowledge about the unknown true distribution is required to construct this function. In case of gene expression this information is available in the form of the postulated (e.g. quadratic) variance structure of the data.As the quasi-likelihood behaves (almost) like a proper likelihood, it allows for the estimation of calibration and variance parameters, and it is also straightforward to obtain corresponding approximate confidence intervals. Unlike most other frameworks, it also allows analysis on any preferred scale, i.e. both on the original linear scale as well as on a transformed scale. It can also be employed in regression approaches to model systematic (e.g. array or dye) effects.

Conclusions

The quasi-likelihood framework provides a simple and versatile approach to analyze gene expression data that does not make any strong distributional assumptions about the underlying error model. For several simulated as well as real data sets it provides a better fit to the data than competing models. In an example it also improved the power of tests to identify differential expression.
  相似文献   

17.
A method is proposed that aims at identifying clusters of individuals that show similar patterns when observed repeatedly. We consider linear‐mixed models that are widely used for the modeling of longitudinal data. In contrast to the classical assumption of a normal distribution for the random effects a finite mixture of normal distributions is assumed. Typically, the number of mixture components is unknown and has to be chosen, ideally by data driven tools. For this purpose, an EM algorithm‐based approach is considered that uses a penalized normal mixture as random effects distribution. The penalty term shrinks the pairwise distances of cluster centers based on the group lasso and the fused lasso method. The effect is that individuals with similar time trends are merged into the same cluster. The strength of regularization is determined by one penalization parameter. For finding the optimal penalization parameter a new model choice criterion is proposed.  相似文献   

18.
We present a method to fit a mixed effects Cox model with interval‐censored data. Our proposal is based on a multiple imputation approach that uses the truncated Weibull distribution to replace the interval‐censored data by imputed survival times and then uses established mixed effects Cox methods for right‐censored data. Interval‐censored data were encountered in a database corresponding to a recompilation of retrospective data from eight analytical treatment interruption (ATI) studies in 158 human immunodeficiency virus (HIV) positive combination antiretroviral treatment (cART) suppressed individuals. The main variable of interest is the time to viral rebound, which is defined as the increase of serum viral load (VL) to detectable levels in a patient with previously undetectable VL, as a consequence of the interruption of cART. Another aspect of interest of the analysis is to consider the fact that the data come from different studies based on different grounds and that we have several assessments on the same patient. In order to handle this extra variability, we frame the problem into a mixed effects Cox model that considers a random intercept per subject as well as correlated random intercept and slope for pre‐cART VL per study. Our procedure has been implemented in R using two packages: truncdist and coxme , and can be applied to any data set that presents both interval‐censored survival times and a grouped data structure that could be treated as a random effect in a regression model. The properties of the parameter estimators obtained with our proposed method are addressed through a simulation study.  相似文献   

19.
Elashoff RM  Li G  Li N 《Biometrics》2008,64(3):762-771
Summary .   In this article we study a joint model for longitudinal measurements and competing risks survival data. Our joint model provides a flexible approach to handle possible nonignorable missing data in the longitudinal measurements due to dropout. It is also an extension of previous joint models with a single failure type, offering a possible way to model informatively censored events as a competing risk. Our model consists of a linear mixed effects submodel for the longitudinal outcome and a proportional cause-specific hazards frailty submodel ( Prentice et al., 1978 , Biometrics 34, 541–554) for the competing risks survival data, linked together by some latent random effects. We propose to obtain the maximum likelihood estimates of the parameters by an expectation maximization (EM) algorithm and estimate their standard errors using a profile likelihood method. The developed method works well in our simulation studies and is applied to a clinical trial for the scleroderma lung disease.  相似文献   

20.
Agrobacterium-mediated gene transfer is the method of choice for many plant biotechnology laboratories; however, large- scale use of this organism in conifer transformation has been limited by difficult propagation of explant material, selection efficiencies and low transformation frequency. We have analyzed co-cultivation conditions and different disarmed strains of Agrobacterium to improve transformation. Additional copies of virulence genes were added to three common disarmed strains. These extra virulence genes included either a constitutively active virG or extra copies of virG and virB, both from pTiBo542. In experiments with Norway spruce, we increased transformation efficiencies 1000-fold from initial experiments where little or no transient expression was detected. Over 100 transformed lines expressing the marker gene -glucuronidase (GUS) were generated from rapidly dividing embryogenic suspension-cultured cells co- cultivated with Agrobacterium. GUS activity was used to monitor transient expression and to further test lines selected on kanamycin-containing medium. In loblolly pine, transient expression increased 10-fold utilizing modified Agrobacterium strains. Agrobacterium-mediated gene transfer is a useful technique for large-scale generation of transgenic Norway spruce and may prove useful for other conifer species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号