首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The molecular population genetics of regulatory genes   总被引:19,自引:0,他引:19  
Regulatory loci, which may encode both trans acting proteins as well as cis acting promoter regions, are crucial components of an organism's genetic architecture. Although evolution of these regulatory loci is believed to underlie the evolution of numerous adaptive traits, there is little information on natural variation of these genes. Recent molecular population genetic studies, however, have provided insights into the extent of natural variation at regulatory genes, the evolutionary forces that shape them and the phenotypic effects of molecular regulatory variants. These recent analyses suggest that it may be possible to study the molecular evolutionary ecology of regulatory diversification by examining both the extent and patterning of regulatory gene diversity, the phenotypic effects of molecular variation at these loci and their ecological consequences.  相似文献   

3.
While many functional elements of the meiotic process are well characterized in model organisms, the genetic basis of most of the natural phenotypic variation observed in meiotic pathways has not been determined. To begin to address this issue, we characterized patterns of polymorphism and divergence in the protein-coding regions of 33 genes across 31 lines of Drosophila melanogaster and 6 lines of Drosophila simulans. We sequenced genes known to be involved in chromosome segregation, recombination, DNA repair, and related heterochromatin binding. As expected, we found several of the genes to be highly conserved, consistent with purifying selection. However, a subset of genes showed patterns of polymorphism and divergence typical of other types of natural selection. Moreover, several intriguing differences between the two Drosophila lineages were evident: along the D. simulans lineage we consistently found evidence of adaptive protein evolution, whereas along the D. melanogaster lineage several loci exhibited patterns consistent with the maintenance of protein variation.  相似文献   

4.
Stinchcombe JR  Hoekstra HE 《Heredity》2008,100(2):158-170
A central challenge in evolutionary biology is to identify genes underlying ecologically important traits and describe the fitness consequences of naturally occurring variation at these loci. To address this goal, several novel approaches have been developed, including 'population genomics,' where a large number of molecular markers are scored in individuals from different environments with the goal of identifying markers showing unusual patterns of variation, potentially due to selection at linked sites. Such approaches are appealing because of (1) the increasing ease of generating large numbers of genetic markers, (2) the ability to scan the genome without measuring phenotypes and (3) the simplicity of sampling individuals without knowledge of their breeding history. Although such approaches are inherently applicable to non-model systems, to date these studies have been limited in their ability to uncover functionally relevant genes. By contrast, quantitative genetics has a rich history, and more recently, quantitative trait locus (QTL) mapping has had some success in identifying genes underlying ecologically relevant variation even in novel systems. QTL mapping, however, requires (1) genetic markers that specifically differentiate parental forms, (2) a focus on a particular measurable phenotype and (3) controlled breeding and maintenance of large numbers of progeny. Here we present current advances and suggest future directions that take advantage of population genomics and quantitative genetic approaches - in both model and non-model systems. Specifically, we discuss advantages and limitations of each method and argue that a combination of the two provides a powerful approach to uncovering the molecular mechanisms responsible for adaptation.  相似文献   

5.
Locked within our genetic code are the histories of our genes and the genes of our ancestors. Deciphering a population's history from genetic data often involves lengthy investigations of many loci for many individuals. We test hypothetical population histories of the Thule expansion using a new coalescent simulation method that uses little more than mitochondrial haplogroup data. This new methodology rejects a severe bottleneck at expansion and reveals the range of probable population histories on which to focus future research.  相似文献   

6.
Kovacevic M  Schaeffer SW 《Genetics》2000,156(1):155-172
This article presents a nucleotide sequence analysis of 500 bp determined in each of five X-linked genes, runt, sisterlessA, period, esterase 5, and Heat-shock protein 83, in 40 Drosophila pseudoobscura strains collected from two populations. Estimates of the neutral migration parameter for the five loci show that gene flow among D. pseudoobscura populations is sufficient to homogenize inversion frequencies across the range of the species. Nucleotide diversity at each locus fails to reject a neutral model of molecular evolution. The sample of 40 chromosomes included six Sex-ratio inversions, a series of three nonoverlapping inversions that are associated with a strong meiotic drive phenotype. The selection driven by the Sex-ratio meiotic drive element has not fixed variation across the X chromosome of D. pseudoobscura because, while significant linkage disequilibrium was observed within the sisterlessA, period, and esterase 5 genes, we did not find evidence for nonrandom association among loci. The Sex-ratio chromosome was estimated to be 25,000 years old based on the decomposition of linkage disequilibrium between esterase 5 and Heat-shock protein 83 or 1 million years old based on the net divergence of esterase 5 between Standard and Sex-ratio chromosomes. Genetic diversity was depressed within esterase 5 within Sex-ratio chromosomes, while the four other genes failed to show a reduction in heterozygosity in the Sex-ratio background. The reduced heterogeneity in esterase 5 is due either to its location near one of the Sex-ratio inversion breakpoints or that it is closely linked to a gene or genes responsible for the Sex-ratio meiotic drive system.  相似文献   

7.
8.
9.
10.
Ohta T 《Genetics》1978,88(4):845-861
The evolution of repeated genes forming a multigene family in a finite population is studied with special reference to the probability of gene identity, i.e., the identity probability of two gene units chosen from the gene family. This quantity is called clonality and is defined as the sum of squares of the frequencies of gene lineages in the family. The multigene family is undergoing continuous unequal somatic crossing over, ordinary interchromosomal crossing over, mutation and random frequency drift. Two measures of clonality are used: clonality within one chromosome and that between two different chromosomes. The equilibrium properties of the means, the variances and the covariance of the two measures of clonality are investigated by using the diffusion equation method under the assumption of constant number of gene units in the multigene family. Some models of natural selection based on clonality are considered. The possible significance of the variance and covariance of clonality among the chromosomes on the adaptive differentiation of gene families such as those producing antibodies is discussed.  相似文献   

11.
This brief review provides a summary of the biological causes of genetic association between tightly linked markers--termed linkage disequilibrium--and unlinked markers--termed population structure. We also review the utility of linkage disequilibrium data in gene mapping in isolated populations, in the estimation of recombination rates and in studying the history of particular alleles, including the detection of natural selection. We discuss current understanding of the extent and patterns of linkage disequilibrium in the genome, and its promise for genetic association studies in complex disease. Finally, we highlight the importance of using appropriate statistical procedures, such as the false discovery rate, to maximize the chances of success in large scale association studies.  相似文献   

12.
We present a method to distinguish authentic ancient DNA from contaminating DNA in a human bone. This is achieved by taking account of the spatial distribution of the various sequence families within the bone and the extent of degradation of the template DNAs, as revealed by the error content of the sequences. To demonstrate the veracity of the method, we handled two ancient human tibiae in order to contaminate them with modern DNA, and then subjected segments of the bones to various decontaminating treatments, including removal of the outer 1-2 mm, before extracting DNA, cloning, and obtaining a total of 107 mitochondrial DNA sequences. Sequences resulting from the deliberate contamination were located exclusively in the outer 1-2 mm of the bones, and only one of these 27 sequences contained an error that could be ascribed to DNA degradation. A second, much smaller set of relatively error-free sequences, which we ascribe to contamination during excavation or curation, was also located exclusively in the outer 1-2 mm. In contrast, a family of 72 sequences, displaying extensive degradation products but identifiable as haplogroup U5a1a, was distributed throughout one of the bones and represents the authentic ancient DNA content of this specimen.  相似文献   

13.
Insects respond to septic infection in part by producing a suite of antimicrobial peptides that may be subject to host-pathogen coevolutionary dynamics. In order to infer population genetic forces acting on Drosophila antibacterial peptide genes, we examine global properties of polymorphism and divergence in the Drosophila melanogaster defensin, drosocin, metchnikowin, attacin C, diptericin A, and cecropin A, B, and C genes. As a functional class, antibacterial peptides exhibit low levels of interspecific amino acid divergence. There are multiple amino acid polymorphisms segregating within D. melanogaster, however, a high proportion of which change the charge or polarity of the variable residue. These polymorphisms are particularly prevalent in processed signal and propeptide domains. We find that models of coevolutionary "arms races" and selectively maintained hypervariability do not adequately describe the population dynamics of mature antibacterial peptides in D. melanogaster, but that a highly significant excess of high-frequency derived polymorphisms coupled with substantial intralocus linkage disequilibrium suggests that positive selection may act on antibacterial peptide genes. Some attributes of the data may be consistent with a simple demographic model of population founding followed by expansion, but departures from the equilibrium null tend to be more pronounced in the peptide genes than at other loci around the genome.  相似文献   

14.
RADSeq: next-generation population genetics   总被引:2,自引:0,他引:2  
Next-generation sequencing technologies are making a substantial impact on many areas of biology, including the analysis of genetic diversity in populations. However, genome-scale population genetic studies have been accessible only to well-funded model systems. Restriction-site associated DNA sequencing, a method that samples at reduced complexity across target genomes, promises to deliver high resolution population genomic data-thousands of sequenced markers across many individuals-for any organism at reasonable costs. It has found application in wild populations and non-traditional study species, and promises to become an important technology for ecological population genomics.  相似文献   

15.
Deredec A  Burt A  Godfray HC 《Genetics》2008,179(4):2013-2026
Homing endonuclease genes (HEGs) encode proteins that in the heterozygous state cause double-strand breaks in the homologous chromosome at the precise position opposite the HEG. If the double-strand break is repaired using the homologous chromosome, the HEG becomes homozygous, and this represents a powerful genetic drive mechanism that might be used as a tool in managing vector or pest populations. HEGs may be used to decrease population fitness to drive down population densities (possibly causing local extinction) or, in disease vectors, to knock out a gene required for pathogen transmission. The relative advantages of HEGs that target viability or fecundity, that are active in one sex or both, and whose target is expressed before or after homing are explored. The conditions under which escape mutants arise are also analyzed. A different strategy is to place HEGs on the Y chromosome that cause one or more breaks on the X chromosome and so disrupt sex ratio. This strategy can cause severe sex-ratio biases with efficiencies that depend on the details of sperm competition and zygote mortality. This strategy is probably less susceptible to escape mutants, especially when multiple X shredders are used.  相似文献   

16.
To investigate the potential importance of gene duplication in D. melanogaster accessory gland protein (Acp) gene evolution we carried out a computational analysis comparing annotated D. melanogaster Acp genes to the entire D. melanogaster genome. We found that two known Acp genes are actually members of small multigene families. Polymorphism and divergence data from these duplicated genes suggest that in at least four cases, protein divergence between D. melanogaster and D. simulans is a result of directional selection. One putative Acp revealed by our computational analysis shows evidence of a recent selective sweep in a non-African population (but not in an African population). These data support the idea that selection on reproduction-related genes may drive divergence of populations within species, and strengthen the conclusion that Acps may often be under directional selection in Drosophila.  相似文献   

17.
The addictions are common chronic psychiatric diseases that today are prevented and treated using relatively untargeted and only partially effective methods. The addictions are moderately to highly heritable, which is paradoxical because these disorders require use; a choice that is itself modulated by both genes and environment. The addictions are interrelated and related to other psychiatric diseases by common neurobiological pathways, including those that modulate reward, behavioural control and the anxiety or stress response. Our future understanding of addictions will be enhanced by the identification of genes that have a role in altered substance-specific vulnerabilities such as variation in drug metabolism or drug receptors and a role in shared vulnerabilities such as variation in reward or stress resiliency.  相似文献   

18.
19.
20.
Wagstaff BJ  Begun DJ 《Genetics》2005,171(3):1083-1101
Molecular population genetic investigation of Drosophila male reproductive genes has focused primarily on melanogaster subgroup accessory gland protein genes (Acp's). Consistent with observations from male reproductive genes of numerous taxa, Acp's evolve more rapidly than nonreproductive genes. However, within the Drosophila genus, large data sets from additional types of male reproductive genes and from different species groups are lacking. Here we report findings from a molecular population genetics analysis of male reproductive genes of the repleta group species, Drosophila arizonae and D. mojavensis. We find that Acp's have dramatically higher average pairwise Ka/Ks (0.93) than testis-enriched genes (0.19) and previously reported melanogaster subgroup Acp's (0.42). Overall, 10 of 19 Acp's have Ka/Ks > 1 either in nonpolarized analyses or in at least one lineage of polarized analyses. Of the nine Acp's for which outgroup data were available, average Ka/Ks was considerably higher in D. mojavensis (2.08) than in D. arizonae (0.87). Contrasts of polymorphism and divergence suggest that adaptive protein evolution at Acp's is more common in D. mojavensis than in D. arizonae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号