首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
We enriched liver microsomes in lipid classes and molecular species disrupting membranes with octyl glucoside and reassembling them by detergent removal. Phosphatidylethanolamine incorporated into membranes better than phosphatidylserine or phosphatidylcholine. In addition, the degree of incorporation depended on the unsaturation of fatty acyl-chains. The enrichment of the membranes with phosphatidylserine or phosphatidylcholine inhibited serine base-exchange, whereas the addition of phosphatidylethanolamine usually stimulated it. The effect of exogenous lipids also depended on molecular species; egg yolk phosphatidylcholine and dipalmitoyl phosphatidylcholine inhibited base-exchange whereas the effect of palmitoyl-oleoyl phosphatidylcholine depended on the incorporated amount. The degree of unsaturation also modulated the effect of phosphatidylethanolamine.  相似文献   

2.
3.
4.
5.
Male Sprague-Dawley rats were exposed to increasing concentrations (15-22 mg/l) of ethanol vapor over a 4-day period. Phospholipids were analyzed in liver mitochondria isolated from ethanol-treated and pair-weighted control animals. After a 2-day inhalation period, the proportion of monoenoic acids in total phospholipids increased, whereas that of arachidonic acid decreased. These changes were more striking in phosphatidylcholine (PC) than in phosphatidylethanolamine (PE). The decrease in 20:4 may be related to increased lipid peroxidation. After a 4-day inhalation period, quite different changes in phospholipid fatty acids were found. They consisted in a trend towards a more unsaturated system, the proportion of 20:4 being increased in PC and that of 22:6 in PE. This increase in polyunsaturated acids might be related to a direct ethanol effect on lipid structure and/or metabolism that would be linked to the high blood alcohol level present at this stage of ethanol intoxication.  相似文献   

6.
Male Wistar rats (2 months old) were maintained on a nutritionally adequate diet, and diazepam was administered at a dose of 10 mg/kg/day. After 24 weeks the effects on the fatty acid composition of plasma and liver phospholipids were studied. Increased levels of palmitic (16:0), palmitoleic (16:1n-7), stearic (18:0), and oleic (18:1n-9) acids were found in plasma phospholipids. In contrast, the levels of docosapentanoic (22:5n-3) and docosahexanoic (22:6n-3; DHA) acids were drastically decreased by diazepam. A significant decrease produced by diazepam was also found in levels of DHA in liver phospholipids.  相似文献   

7.
8.
9.
Ginkgo biloba is one of the most popular herb nutrition supplements, with terpene lactones and flavonoids being the two major active components. A fingerprint profile method was developed using a capillary HPLC/MS method which can identify more than 70 components from the G. biloba product. The method allows the flavonoids and terpene lactones to be detected simultaneously and information of both the parent ion and its fragmentation can be obtained in just one HPLC/MS run. Targeted post-acquisition analysis allows mass spectrometric information regarding the identification of flavonoid components to be easily distinguished from other data, however the same approach for terpene lactones was less successful due to dimer formation and requires further development. The fingerprint profiles of five commercial G. biloba nutritional supplements were obtained and compared; variation of some components among the samples was observed and fortification could be detected. In the quality control analysis of the G. biloba product this method could be viewed as complementary to specific quantitative analysis of some bioactive components of the herb.  相似文献   

10.
Matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) has been applied primarily to the analysis of glycosphingolipids separated from other complex mixtures by TLC, but it is difficult to obtain quantitative profiling of each glycosphingolipid among the different spots on TLC by MALDI-MS. Thus, the development of a convenient approach that utilizes liquid chromatography/electrospray ionization (LC/ESI)-MS has received interest. However, previously reported methods have been insufficient to separate and distinguish each ganglioside class. Here we report an effective method for the targeted analysis of theoretically expected ganglioside molecular species by LC/ESI tandem mass spectrometry (LC/ESI-MS/MS) in combination with multiple reaction monitoring (MRM). MRM detection specific for sialic acid enabled us to analyze ganglioside standards such as GM1, GM2, GM3, GD1, and GT1 at picomolar to femtomolar levels. Furthermore, other gangliosides, such as GD2, GD3, GT2, GT3, and GQ1, were also detected in glycosphingolipid standard mixtures from porcine brain and acidic glycolipid extract from mouse brain by theoretically expanded MRM. We found that this approach was also applicable to sulfatides contained in the glycosphingolipid mixtures. In addition, we established a method to separate and distinguish regioisomeric gangliosides, such as GM1a and -1b, GD1a, -1b, and -1c, and GT1a, -1b, and -1c with diagnostic sugar chains in the MRM.  相似文献   

11.
Phospholipid hydroperoxide glutathione peroxidase (PHGPx; EC 1.11.1.12), a broad-spectrum thiol-dependent peroxidase, deserves renewed interest as a regulatory factor in various signaling cascades and as a structural protein in sperm cells. We present a first attempt to identify catalytic intermediates and derivatives of the selenoprotein by liquid chromatography coupled to electrospray tandem mass spectrometry (LC/ESI-MS/MS) and to explain observed specificities by molecular modeling. The ground state enzyme E proved to correspond to position 3-170 of the deduced porcine sequence with selenium being present as selenocysteine at position 46. The selenenic acid form, which is considered to be the first catalytic intermediate F formed by reaction with hydroperoxide, could not be identified. The second catalytic intermediate G was detected as Se-glutathionylated enzyme. This intermediate is generated in the reverse reaction where the active site selenol interacts with glutathione disulfide (GSSG). According to molecular models, specific binding of reduced glutathione (GSH) and of GSSG is inter alia facilitated by electrostatic attraction of Lys-48 and Lys-125. Polymerization of PHGPx is obtained under oxidizing conditions in the absence of low molecular weight thiols. Analysis of MS spectra revealed that the process is due to a selective reaction of Sec-46 with Cys-148' resulting in linear polymers representing dead-end intermediates (G'). FT Docking of PHGPx molecules allowed reactions of Sec-46 with either Cys-66', Cys-107', Cys-168' or Cys-148', the latter option being most likely as judged by the number of proposed intermediates with reasonable hydrogen bonds, interaction energies and interface areas. We conclude that the same catalytic principles, depending on the conditions, can drive the diverse actions of PHGPx, i.e. hydroperoxide reduction, GSSG reduction, S-derivatization and self-incorporation into biological structures.  相似文献   

12.
13.
Tryparedoxin peroxidases (TXNPx) catalyze hydroperoxide reduction by tryparedoxin (TXN) by an enzyme substitution mechanism presumed to involve three catalytic intermediates: (i) a transient oxidation state having C52 oxidized to a sulfenic acid, (ii) the stable oxidized form with C52 disulfide-bound to C173', and (iii) a semi-reduced intermediate with C40 of TXN disulfide-linked to C173' from which the ground state enzyme is regenerated by thiol/disulfide reshuffling. This kinetically unstable form was mimmicked by a dead-end intermediate generated by cooxidation of TXNPx of Trypanosoma brucei brucei with an inhibitory mutein of TXN in which C43 was replaced by serine (TbTXNC43S). Cleavage of the isolated dead-end intermediate by trypsin plus chymotrypsin yielded a fragment that complied in size with the TbTXNC43S sequence 36 to 44 disulfide-linked to the TbTXNPx sequence 169 to 177. The presumed nature of the proteolytic fragment was confirmed by MS/MS sequencing. The results provide direct chemical evidence for the assumption that the reductive part of the catalysis is initiated by an attack of the substrate's solvent-exposed C40 on C173' of the oxidized peroxidase and, thus, confirm the hypothesis on the interaction of 2-Cys-peroxiredoxins with their proteinaceous substrates.  相似文献   

14.
利用一种灵敏的、基于ESI-MS/MS(electrospray ionization tandem mass spectrometry)的脂类组学方法,测定了机械伤害诱导的拟南芥6种磷脂(phosphohpids)、2种糖脂(glycolipids)、3种溶血磷脂(lysophospholipids)和约120种脂类分子的变化,探索了膜脂响应机械伤害的基本趋势。结果表明,机械伤害后磷脂酸(phosphatidic acid,PA)和3种溶血磷脂显著升高,而叶绿体膜上的糖脂减少;在测量的1小时范围内,不同脂类水解产生的磷脂酸分子的增加速度和强度不同,反映出它们经历了不同的生化过程。具体表现为:(1)叶绿体膜脂磷脂酰甘油(phosphatidylglycero,PG)分子34:4 PG水解的产物磷脂酸分子34:4 PA的积累速度明显慢于其它磷脂酸分子;(2)磷脂酸分子34:6 PA仅有少量的积累,其可能是由叶绿体膜脂单半乳糖二酰甘油(monogalactosyldiacylglycerol,MGDG)。分子34:6 MGDG和双半乳糖二酰甘油(digalactosyldiacylglycerol,DGDG)分子34:6 DGDG水解产生,然而这两种糖脂含量明显下降,说明它们有可能还参与了其它的反应。脂类的摩尔百分组成没有剧烈的变化。  相似文献   

15.
16.
17.
Four subfractions of phosphatidycholine and phosphyatidylethanolamine according to the degree of unsaturation of their fatty acids have been separated from lipid extracts of microsomes, and inner and outer mitochondrial membranes. The predominant species found in the three membranes contained one saturated and one unsaturated fatty acid. In microsomes completely saturated species of both phosphatidylcholine and phosphatideylethanolamine were practically nonexistent. In outer mitochondrial membranes species with two unsaturated fatty acids were absent. In the inner mitochondrial membranes, however, disaturated species and those with two unsaturated fatty acids were found.  相似文献   

18.
Nano-electrospray ionization tandem mass spectrometry (nano-ESI-MS/MS) was employed to determine qualitative differences in the lipid molecular species composition of a comprehensive set of organellar membranes, isolated from a single culture of Saccharomyces cerevisiae cells. Remarkable differences in the acyl chain composition of biosynthetically related phospholipid classes were observed. Acyl chain saturation was lowest in phosphatidylcholine (15.4%) and phosphatidylethanolamine (PE; 16.2%), followed by phosphatidylserine (PS; 29.4%), and highest in phosphatidylinositol (53.1%). The lipid molecular species profiles of the various membranes were generally similar, with a deviation from a calculated average profile of approximately +/- 20%. Nevertheless, clear distinctions between the molecular species profiles of different membranes were observed, suggesting that lipid sorting mechanisms are operating at the level of individual molecular species to maintain the specific lipid composition of a given membrane. Most notably, the plasma membrane is enriched in saturated species of PS and PE. The nature of the sorting mechanism that determines the lipid composition of the plasma membrane was investigated further. The accumulation of monounsaturated species of PS at the expense of diunsaturated species in the plasma membrane of wild-type cells was reversed in elo3Delta mutant cells, which synthesize C24 fatty acid-substituted sphingolipids instead of the normal C26 fatty acid-substituted species. This observation suggests that acyl chain-based sorting and/or remodeling mechanisms are operating to maintain the specific lipid molecular species composition of the yeast plasma membrane.  相似文献   

19.
(1) The hydrolysis of 32P- or myo-[2-3H]inositol-labelled rat liver microsomal phospholipids by rat liver lysosomal enzymes has been studied. (2) The relative rates of hydrolysis of phospholipids at pH4.5 are: sphingomyelin>phosphatidylethanolamine>phosphatidylcholine> phosphatidylinositol. (3) The predominant products of phosphatidylcholine and phosphatidylethanolamine hydrolysis are their corresponding lyso-compounds, indicating a slow rate of total deacylation. (4) Ca2+ inhibits the hydrolysis of all phospholipids, though only appreciably at high (>5mm) concentration. The hydrolysis of sphingomyelin is considerably less sensitive to Ca2+ than that of glycerophospholipids. (5) Analysis of the water-soluble products of phosphatidylinositol hydrolysis (by using myo-[3H]inositol-labelled microsomal fraction as a substrate) produced evidence that more than 95% of the product is phosphoinositol, which was derived by direct cleavage from phosphatidylinositol, rather than by hydrolysis of glycerophosphoinositol. (6) This production of phosphoinositol, allied with negligible lysophosphatidylinositol formation and a detectable accumulation of diacylglycerol, indicates that lysosomes hydrolyse membrane phosphatidylinositol almost exclusively in a phospholipase C-like manner. (7) Comparisons are drawn between the hydrolysis by lysosomal enzymes of membrane substrates and that of pure phospholipid substrates, and also the possible role of phosphatidylinositol-specific lysosomal phospholipase C in cellular phosphatidylinositol catabolism is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号