首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of grazing by a mixed assemblage of soil protozoa (seven flagellates and one amoeba) on bacterial community structure was studied in soil microcosms amended with a particulate resource (sterile wheat roots) or a soluble resource (a solution of various organic compounds). Sterilized soil was reinoculated with mixed soil bacteria (obtained by filtering and dilution) or with bacteria and protozoa. Denaturing gradient gel electrophoresis (DGGE) of PCR amplifications of 16S rRNA gene fragments, as well as community level physiological profiling (Biolog plates), suggested that the mixed protozoan community had significant effects on the bacterial community structure. Excising and sequencing of bands from the DGGE gels indicated that high-G+C gram-positive bacteria closely related to Arthrobacter spp. were favored by grazing, whereas the excised bands that decreased in intensity were related to gram-negative bacteria. The percentages of intensity found in bands related to high G+C gram positives increased from 4.5 and 12.6% in the ungrazed microcosms amended with roots and nutrient solution, respectively, to 19.3 and 32.9% in the grazed microcosms. Protozoa reduced the average bacterial cell size in microcosms amended with nutrient solution but not in the treatment amended with roots. Hence, size-selective feeding may explain some but not all of the changes in bacterial community structure. Five different protozoan isolates (Acanthamoeba sp., two species of Cercomonas, Thaumatomonas sp., and Spumella sp.) had different effects on the bacterial communities. This suggests that the composition of protozoan communities is important for the effect of protozoan grazing on bacterial communities.  相似文献   

2.
Dialysis tubing containing spent culture media, when placed in a lake, was colonized by a low diversity of bacteria, whereas abiotic controls had considerable diversity. Changes were seen in the presence and absence of acylated homoserine lactones, suggesting that these molecules and other factors may influence adherent-population composition.  相似文献   

3.
We analyzed changes in bacterioplankton morphology and composition during enhanced protozoan grazing by image analysis and fluorescent in situ hybridization with group-specific rRNA-targeted oligonucleotide probes. Enclosure experiments were conducted in a small, fishless freshwater pond which was dominated by the cladoceran Daphnia magna. The removal of metazooplankton enhanced protozoan grazing pressure and triggered a microbial succession from fast-growing small bacteria to larger grazing-resistant morphotypes. These were mainly different types of filamentous bacteria which correlated in biomass with the population development of heterotrophic nanoflagellates (HNF). Small bacterial rods and cocci, which showed increased proportion after removal of Daphnia and doubling times of 6 to 11 h, belonged nearly exclusively to the beta subdivision of the class Proteobacteria and the Cytophaga-Flavobacterium cluster. The majority of this newly produced bacterial biomass was rapidly consumed by HNF. In contrast, the proportion of bacteria belonging to the gamma and alpha subdivisions of the Proteobacteria increased throughout the experiment. The alpha subdivision consisted mainly of rods that were 3 to 6 microm in length, which probably exceeded the size range of bacteria edible by protozoa. Initially, these organisms accounted for less than 1% of total bacteria, but after 72 h they became the predominant group of the bacterial assemblage. Other types of grazing-resistant, filamentous bacteria were also found within the beta subdivision of Proteobacteria and the Cytophaga-Flavobacterium cluster. We conclude that the predation regimen is a major structuring force for the bacterial community composition in this system. Protozoan grazing resulted in shifts of the morphological as well as the taxonomic composition of the bacterial assemblage. Grazing-resistant filamentous bacteria can develop within different phylogenetic groups of bacteria, and formerly underepresented taxa might become a dominant group when protozoan predation is the major selective pressure.  相似文献   

4.
Floristically diverse Nardo-Galion upland grasslands are common in Ireland and the UK and are valuable in agricultural, environmental and ecological terms. Under improvement (inputs of lime, fertiliser and re-seeding), they convert to mesotrophic grassland containing very few plant species. The effects of upland grassland improvement and seasonality on soil microbial communities were investigated at an upland site. Samples were taken at five times in one year in order to observe seasonal trends, and bacterial community structure was monitored using automated ribosomal intergenic spacer analysis (ARISA), a DNA-fingerprinting approach. Differences in soil chemistry and bacterial community structure between unimproved and improved grassland soils were noted. Season was also found to cause mild fluctuations in bacterial community structure, with soil samples from colder months (October and December) more correlated with change in ribotype profiles than samples from warmer months. However, for the majority of seasons clear differences in bacterial community structures from unimproved and improved soils could be seen, indicating seasonal influences did not obscure effects associated with improvement.  相似文献   

5.
Bacterial community composition was assessed during riverine biofilm development by the Catalyzed Reporter Deposition Fluorescence In Situ Hybridization (CARD-FISH) in combination with Confocal Laser Scanning Microscopy. Using artificial substrates, it was possible to follow the dynamics of specific bacterial clusters, while maintaining the unaltered structure and architecture of the biofilm.  相似文献   

6.
AIMS: This study evaluated the effect of protozoan movement and grazing on the topography of a dual-bacterial biofilm using both conventional light microscopy and a new ultrasonic technique. METHODS AND RESULTS: Coupons of dialysis membrane were incubated in Chalkley's medium for 3 days at 23 degrees C in the presence of bacteria (Pseudomonas aeruginosa and Klebsiella aerogenes) alone, or in co-culture with the flagellate Bodo designis, the ciliate Tetrahymena pyriformis or the amoeba Acanthamoeba castellanii. Amoebic presence resulted in a confluent biofilm similar to the bacteria-only biofilm while the flagellate and ciliate created more diverse biofilm topographies comprising bacterial microcolonies and cavities. CONCLUSIONS: The four distinct biofilm topographies were successfully discerned with ultrasonic imaging and the method yielded information similar to that obtained with conventional light microscopy. SIGNIFICANCE AND IMPACT OF THE STUDY: Ultrasonic imaging provides a potential way forward in the development of a portable, nondestructive technique for profiling the topography of biofilms in situ, which might aid in the future management of biofouling.  相似文献   

7.
The influence of grazing by the bacterivorous nanoflagellate Ochromonas sp. strain DS on the taxonomic and morphological structures of a complex bacterial community was studied in one-stage chemostat experiments. A bacterial community, consisting of at least 30 different strains, was fed with a complex carbon source under conditions of low growth rate (0.5 day(-1) when nongrazed) and low substrate concentration (9 mg liter(-1)). Before and after the introduction of the predator, the bacterial community composition was studied by in situ techniques (immunofluorescence microscopy and fluorescent in situ hybridization), as well as by cultivation on agar media. The cell sizes of nonspecifically stained and immunofluorescently labeled bacteria were measured by image analysis. Grazing by the flagellate caused a bidirectional change in the morphological structure of the community. Medium-size bacterial cells, which dominated the nongrazed community, were largely replaced by smaller cells, as well as by cells contained in large multicellular flocs. Cell morphological changes were combined with community taxonomic changes. After introduction of the flagellate, the dominating strains with medium-size cells were largely replaced by single-celled strains with smaller cells on the one hand and, on the other hand, by Pseudomonas sp. strain MWH1, which formed the large, floc-like forms. We assume that size-selective grazing was the major force controlling both the morphological and the taxonomic structures of the model community.  相似文献   

8.
Natural and anthropogenic impacts such as terrestrial runoff, influence the water quality along the coast of the Great Barrier Reef (GBR) and may in turn affect coral reef communities. Associated bacterial biofilms respond rapidly to environmental conditions and are potential bioindicators for changes in water quality. As a prerequisite to study the effects of water quality on biofilm communities, appropriate biofilm substrates for deployment in the field must be developed and evaluated. This study investigates the effect of different settlement substrates (i.e. glass slides, ceramic tiles, coral skeletons and reef sediments) on bacterial biofilm communities grown in situ for 48 days at two locations in the Whitsunday Island Group (Central GBR) during two sampling times. Bacterial communities associated with the biofilms were analysed using terminal restriction fragment length polymorphism (T-RFLP) and clone library analyses of 16S rRNA genes. Findings revealed that substrate type had little influence on bacterial community composition. Of particular relevance, glass slides and coral skeletons exhibited very similar communities during both sampling times, suggesting the suitability of standardized glass slides for long-term biofilm indicator studies in tropical coral reef ecosystems.  相似文献   

9.
Biofilms were cultivated on polycarbonate strips in rotating annular reactors using South Saskatchewan River water during the fall of 1999 and the fall of 2001, supplemented with carbon (glucose), nitrogen (NH4Cl), phosphorus (KH2PO4), or combined nutrients (CNP), with or without hexadecane, a model compound representing aliphatic hydrocarbons used to simulate a pollutant. In fall 1999 and fall 2001, comparable denitrification activities and catabolic potentials were observed in the biofilms, implying that denitrifying populations showed similar activity patterns and catabolic potentials during the fall from year to year in this river ecosystem, when environmental conditions were similar. Both nirS and nirK denitrification genes were detected by PCR amplification, suggesting that both denitrifying bacterial subpopulations can potentially contribute to total denitrification. Between 91.7 and 99.8% of the consumed N was emitted in the form of N2, suggesting that emission of N2O, a major potent greenhouse gas, by South Saskatchewan River biofilms is low. Denitrification was markedly stimulated by the addition of CNP, and nirS and nirK genes were predominant only in the presence of CNP. In contrast, individual nutrients had no impact on denitrification and on the occurrence of nirS and nirK genes detected by PCR amplification. Similarly, only CNP resulted in significant increases in algal and bacterial biomass relative to control biofilms. Biomass measurements indicated a linkage between autotrophic and heterotrophic populations in the fall 1999 biofilms. Correlation analyses demonstrated a significant relationship (P < or = 0.05) between the denitrification rate and the biomass of algae and heterotrophic bacteria but not cyanobacteria. At the concentration assessed (1 ppb), hexadecane partially inhibited denitrification in both years, slightly more in the fall of 2001. This study suggested that the response of the anaerobic heterotrophic biofilm community may be cyclic and predictable from year to year and that there are interactive effects between nutrients and the contaminant hexadecane.  相似文献   

10.
We examined the effects of nutrient amendments on epilimnetic freshwater bacteria during three distinct periods in the eutrophic Lake Mendota's seasonal cycle (spring overturn, summer stratification and autumn overturn). Microcosm treatments enriched solely with phosphorus containing compounds did not result in a large bacterial community composition (BCC) change or community activity response (assessed via alkaline phosphatase activity, APA) relative to the controls during any season. Treatments enriched with carbon‐ and nitrogen‐containing compounds resulted in a dramatic BCC change and a large APA increase in the autumn and spring seasons, but only treatments receiving carbon, nitrogen and phosphorus (CNP) exhibited similar responses in the summer season. Despite the fact that the amendments created similar CNP concentration conditions across seasons, the BCC following amendment greatly varied among seasons. 16S rRNA gene sequence analysis indicated that many common freshwater bacterial lineages from the Alpha‐ and Betaproteobacteria class and Bacteroidetes phylum were favoured following nutrient (CNP) addition, but individual taxa were generally not favoured across all seasons. Targeted quantitative PCR analysis revealed that the abundance of the Actinobacteria acIB1 cluster decreased in all microcosms during all three seasons, while the Flavobacterium aquatile (spring) and ME‐B0 (summer) clusters of Bacteroidetes increased following CNP addition. These results suggest a particular bacterial group is not universally favoured by increased nutrient loads to a lake; therefore, efforts to predict which bacteria are involved in nutrient cycling during these periods must take into account the seasonality of freshwater bacterial communities.  相似文献   

11.
In activated sludge, protozoa feed on free-swimming bacteria and suspended particles, inducing flocculation and increasing the turnover rate of nutrients. In this study, the effect of protozoan grazing on nitrification rates under various conditions in municipal activated sludge batch reactors was examined, as was the spatial distribution of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) within the activated sludge. The reactors were monitored for ammonia, nitrite, nitrate, and total nitrogen concentrations, and bacterial numbers in the presence and absence of cycloheximide (a protozoan inhibitor), allylthiourea (an inhibitor of ammonia oxidation), and EDTA (a deflocculating agent). The accumulations of nitrate, nitrite, and ammonia were lower in batches without than with protozoa grazing. Inhibition of ammonia oxidation also decreased the amount of nitrite and nitrate accumulation. Inhibiting protozoan grazing along with ammonia oxidation further decreased the amounts of nitrite and nitrate accumulated. Induction of deflocculation led to high nitrate accumulation, indicating high levels of nitrification; this effect was lessened in the absence of protozoan grazing. Using fluorescent in situ hybridization and confocal laser scanning microscopy, AOB and NOB were found clustered within the floc, and inhibiting the protozoa, inhibiting ammonia oxidation, or inducing flocculation did not appear to lower the number of AOB and NOB present or affect their position within the floc. These results suggest that the AOB and NOB are present but less active in the absence of protozoa.  相似文献   

12.
Biofilms are integral to many marine processes but their formation and function may be affected by anthropogenic inputs that alter environmental conditions, including fertilisers that increase nutrients. Density composition and connectivity of biofilms developed in situ (under ambient and elevated nutrients) were compared using 454-pyrosequencing of the 16S gene. Elevated nutrients shifted community composition from bacteria involved in higher processes (eg Pseudoalteromonas spp. invertebrate recruitment) towards more nutrient-tolerant bacterial species (eg Terendinibacter sp.). This may enable the persistence of biofilm communities by increasing resistance to nutrient inputs. A core biofilm microbiome was identified (predominantly Alteromonadales and Oceanospirillales) and revealed shifts in abundances of core microbes that could indicate enrichment by fertilisers. Fertiliser decreased density and connectivity within biofilms indicating that associations were disrupted perhaps via changes to energetic allocations within the core microbiome. Density composition and connectivity changes suggest nutrients can affect the stability and function of these important marine communities.  相似文献   

13.
Bacteria and fungi are ubiquitous in the near-surface atmosphere where they may impact on the surrounding environment and human health, especially in coastal megacities. However, the diversity, composition, and seasonal variations of these airborne microbes remain limited. This study investigated the airborne microbes of the near-surface atmosphere in coastal megacity Qingdao over one year. It was found that the sample in summer displayed the highest bacterial and fungal diversity, while sample in winter exhibited the lowest bacterial and fungal diversity. Proteobacteria was the dominating bacteria, and Dothideomycetes was the most dominating fungi in the near-surface atmosphere, which took up 53–76 and 49–78% relative abundance, respectively. However, the bacterial diversity and community composition had significant seasonal variations. These data suggest that a complex set of environmental factors, including landscaping ratio, solar radiation temperature, and marine microorganisms, can affect the composition of airborne microbes in the near-surface atmosphere in coastal megacity. The analysis of the pathogenic microorganisms or opportunistic pathogenic microorganisms existed in the near-surface atmosphere revealed that the relative abundance of pathogenic microorganisms in autumn was the highest. The main pathogenic microorganisms or opportunistic pathogenic microorganisms were Acinetobacter baumannii (accounting for up to 9.93% relative abundance), Staphylococcus epidermidis (accounting for up to 11.26% relative abundance), Mycobacterium smegmatis (accounting for up to 3.68% relative abundance), Xanthomonas oryzae pv. oryzae (accounting for up to 5.36% relative abundance), which may be related to certain human or plant diseases in specific environments or at certain seasons. Therefore, the investigation of airborne microbial communities of near-surface atmosphere in coastal megacities is very important to both the understanding of airborne microbes and public health.  相似文献   

14.
This study was based on the hypothesis that biofilms of the opportunistic pathogen Pseudomonas aeruginosa are successfully adapted to situations of protozoan grazing. We tested P. aeruginosa wild type and strains that were genetically altered, in structural and regulatory features of biofilm development, in response to the common surface-feeding flagellate Rhynchomonas nasuta. Early biofilms of the wild type showed the formation of grazing resistant microcolonies in the presence of the flagellate, whereas biofilms without the predator were undifferentiated. Grazing on biofilms of quorum sensing mutants (lasR and rhlR/lasR) also resulted in the formation of microcolonies, however, in lower numbers and size compared to the wild type. Considerably fewer microcolonies than the wild type were formed by mutant cells lacking type IV pili, whereas no microcolonies were formed by flagella-deficient cells. The alginate-overproducing strain PDO300 developed larger microcolonies in response to grazing. These observations suggest a role of quorum sensing in early biofilms and involvement of flagella, type IV pili, and alginate in microcolony formation in the presence of grazing. More mature biofilms of the wild type exhibited acute toxicity to the flagellate R. nasuta. Rapid growth of the flagellate on rhlR/lasR mutant biofilms indicated a key role of quorum sensing in the upregulation of lethal factors and in grazing protection of late biofilms. Both the formation of microcolonies and the production of toxins are effective mechanisms that may allow P. aeruginosa biofilms to resist protozoan grazing and to persist in the environment.  相似文献   

15.
In contrast to the water column, the fate of bacterial production in freshwater sediments is still a matter of debate. Thus, the importance of virus-induced lysis and protozoan grazing of bacteria was investigated for the first time simultaneously in a silty sediment layer of a mesotrophic oxbow lake. Microcosms were installed in the laboratory in order to study the dynamics of these processes over 15 days. All microbial and physicochemical parameters showed acceptable resemblance to field data observed during a concomitant in situ study, and similar conclusions can be drawn with respect to the quantitative impact of viruses and protozoa on the bacterial compartment. Viral decay rates ranged from undetectable to 0.078 h−1 (average, 0.033 h−1), and the control of bacterial production from below the detection limit to 36% (average, 12%). The contribution of virus-induced lysis of bacteria to the dissolved organic matter pool as well as to benthic bacterial nutrition was low. Ingestion rates of protozoan grazers ranged from undetectable to 24.7 bacteria per heterotrophic nanoflagellate (HNF) per hour (average, 4.8 bacteria HNF−1 h−1) and from undetectable to 73.3 bacteria per ciliate per hour (average, 11.2 bacteria ciliate−1 h−1). Heterotrophic nanoflagellate and ciliates together cropped up to 5% (average, 1%) of bacterial production. The viral impact on bacteria prevailed over protozoan grazing by a factor of 2.5–19.9 (average, 9.5). In sum, these factors together removed up to 36% (average, 12%) of bacterial production. The high number of correlations between viral and protozoan parameters is discussed in view of a possible relationship between virus removal and the presence of protozoan grazers.  相似文献   

16.
17.
18.
Resistance against protozoan grazers is a crucial factor that is important for the survival of many bacteria in their natural environment. However, the basis of resistance to protozoans and how resistance factors are regulated is poorly understood. In part, resistance may be due to biofilm formation, which is known to protect bacteria from environmental stress conditions. The ubiquitous organism Serratia marcescens uses quorum sensing (QS) control to regulate virulence factor expression and biofilm formation. We hypothesized that the QS system of S. marcescens also regulates mechanisms that protect biofilms against protozoan grazing. To investigate this hypothesis, we compared the interactions of wild-type and QS mutant strains of S. marcescens biofilms with two protozoans having different feeding types under batch and flow conditions. Under batch conditions, S. marcescens forms microcolony biofilms, and filamentous biofilms are formed under flow conditions. The microcolony-type biofilms were protected from grazing by the suspension feeder, flagellate Bodo saltans, but were not protected from the surface feeder, Acanthamoeba polyphaga. In contrast, the filamentous biofilm provided protection against A. polyphaga. The main findings presented in this study suggest that (i) the QS system is not involved in grazing resistance of S. marcescens microcolony-type biofilms; (ii) QS in S. marcescens regulates antiprotozoan factor(s) that do not interfere with the grazing efficiency of the protozoans; and (iii) QS-controlled, biofilm-specific differentiation of filaments and cell chains in biofilms of S. marcescens provides an efficient mechanism against protozoan grazing.  相似文献   

19.
Seasonal selection in a freshwater heterotrophic bacterial community   总被引:1,自引:0,他引:1  
The objective of this study was to determine if a seasonal selection could be demonstrated in the heterotrophic component of a freshwater bacterial community. Surface samples were taken at approximately monthly intervals covering an annual seasonal cycle, and counts were made of the numbers of bacteria capable of growing at each of 10 incubation temperatures from 0° to 45°C at 5°C intervals. Evidence for seasonal selection was provided by a 6°C shift in the mean temperature of the counts from the summer sample to the winter sample. The selection was even more evident when the number of organisms capable of growing at 10°C and those capable of growing at 35°C were compared over the seasonal cycle. The counts at these two incubation temperatures varied inversely to each other. Although a negligible number of organisms from a representative summer sample grew at 10°C, 18% of the organisms from a representative winter sample grew at this temperature. The data of this study indicate that, although seasonal selection does occur, the magnitude of that selection is not great enough to permit the growth of bacteria during the coldest month to approach the levels of growth observed during the summer months. However, the selection appears to be adequate to permit significant activity during the spring and fall transition months.  相似文献   

20.
Previous studies have shown that membrane-aerated biofilm (MAB) reactors can simultaneously remove carbonaceous and nitrogenous pollutants from wastewater in a single reactor. Oxygen is provided to MABs through gas-permeable membranes such that the region nearest the membrane is rich in oxygen but low in organic carbon, whereas the outer region of the biofilm is void of oxygen but rich in organic carbon. In this study, MABs were grown under similar conditions but at two different fluid velocities (2 and 14 cm s(-1)) across the biofilm. MABs were analyzed for changes in biomass density, respiratory activity, and bacterial community structure as functions of biofilm depth. Biomass density was generally highest near the membrane and declined with distance from the membrane. Respiratory activity exhibited a hump-shaped profile, with the highest activity occurring in the middle of the biofilm. Community analysis by PCR cloning and PCR-denaturing gradient gel electrophoresis of 16S rRNA genes demonstrated substantial stratification of the community structure across the biofilm. Population profiles were also generated by competitive quantitative PCR of gene fragments specific for ammonia-oxidizing bacteria (AOB) (amoA) and denitrifying bacteria (nirK and nirS). At a flow velocity of 14 cm s(-1), AOB were found only near the membrane, whereas denitrifying bacteria proliferated in the anoxic outer regions of the biofilm. In contrast, at a flow velocity of 2 cm s(-1), AOB were either not detected or detected at a concentration near the detection limit. This study suggests that, under the appropriate conditions, both AOB and denitrifying bacteria can coexist within an MAB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号