首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Obesity is featured by chronic systemic low-grade inflammation that eventually contributes to the development of insulin resistance. Toll-like receptor 4 (TLR4) is an important mediator that triggers the innate immune response by activating inflammatory signaling cascades. Human, animal and cell culture studies identified saturated fatty acids (SFAs), the dominant non-esterified fatty acid (NEFA) in the circulation of obese subjects, as non-microbial agonists that trigger the inflammatory response via activating TLR4 signaling, which acts as an important causative link between fatty acid overload, chronic low-grade inflammation and the related metabolic aberrations. The interaction between SFAs and TLR4 may be modulated through the myeloid differentiation primary response gene 88-dependent and independent signaling pathway. Greater understanding of the crosstalk between dietary SFAs and TLR4 signaling in the pathogenesis of metabolic imbalance may facilitate the design of a more efficient pharmacological strategy to alleviate the risk of developing chronic diseases elicited in part by fatty acid overload. The current review discusses recent advances in the impact of crosstalk between SFAs and TLR4 on inflammation and insulin resistance in multiple cell types, tissues and organs in the context of metabolic dysregulation.  相似文献   

2.
AimAlthough unsaturated fatty acids are assumed to be protective against inflammatory disorders that include a pathway involving Toll-like receptor 4 (TLR4) activation, they might actually be toxic because of their high susceptibility to lipid peroxidation. Here we studied the effects of peroxidized unsaturated fatty acids on the TLR4–nuclear factor (NF)-κB pathway in endothelial cells.Main methodsConfluent cultured endothelial cells from bovine aorta were incubated for 1 h with fatty acids integrated into phosphatidylcholine vesicles. Lipopolysaccharide (LPS) or phosphatidylcholine vesicles without fatty acids were also applied as a positive control or a control for fatty acid groups, respectively. Activation of TLR4 and downstream signaling was assessed by membrane fractionation and Western blotting or immunofluorescent staining.Key findingsIn the same way as LPS, application of sufficiently peroxidized unsaturated fatty acids like oleic acid or docosahexaenoic acid, acutely caused TLR4 translocation to caveolae/raft membranes, leading to activation of NF-κB signaling in endothelial cells. In contrast, saturated fatty acids did not show such effects. Applying well-peroxidized unsaturated fatty acids, but not saturated fatty acids, acutely activates the TLR4/NF-κB pathway.SignificancePeroxidation of unsaturated fatty acid is essential for the acute activation of TLR4 by the fatty acids that follow the same pathway as the activation by LPS. Unsaturated fatty acids have been assumed to be protective against inflammatory disorders, and drugs containing unsaturated fatty acids are now developed and provided. Our result suggests that, for inflammatory disorders involving TLR4 signaling, using unsaturated fatty acids as anti-inflammatory drugs may cause contrary effects.  相似文献   

3.
The influence of neuroinflammation on glutamate uptake by glial cells was examined after exposing primary cultures of rat astrocytes to conditioned culture medium from lipopolysaccharide-activated microglia. While such treatment triggered an inflammatory response in astrocytes, as revealed by the induction of cytokine expression, a significant decrease in GLAST expression and activity was observed after 72 h. This regulation of glutamate transporter was not observed with medium from naive microglia, but was mimicked by direct addition of tumor necrosis factor-alpha (TNF-α), a major cytokine released from activated microglia. Hence, on its own, TNF-α also triggered inflammation in astrocyte cultures, highlighting complex cross-talk between astrocytes and microglia in inflammatory conditions. This putatively detrimental regulation of GLAST in response to inflammation was also studied in cells exposed to dibutyryl cAMP, recognized as a model of astrocytes exhibiting a typical differentiated or activated phenotype. In this model, the conditioned culture medium from activated microglia, as well as TNF-α, were found to increase glutamate uptake capacity. Consistently, both of these treatments caused only modest induction of an inflammatory response in dibutyryl cAMP-matured astrocytes as compared to undifferentiated astrocytes. Together, these results suggest that differentiated/activated astrocytes are endowed with the capacity to confront inflammatory insults and that drugs influencing the astrocytes phenotype would deserve further consideration in the treatment of neurological disorders.  相似文献   

4.
5.
6.
Brain edema and the associated increase in intracranial pressure are major consequences of traumatic brain injury (TBI) that accounts for most early deaths after TBI. We recently showed that acute severe trauma to cultured astrocytes results in cell swelling. We further examined whether trauma induces cell swelling in neurons and microglia. We found that severe trauma also caused cell swelling in cultured neurons, whereas no swelling was observed in microglia. While severe trauma caused cell swelling in both astrocytes and neurons, mild trauma to astrocytes, neurons, and microglia failed to cell swelling. Since extracellular levels of glutamate are increased in brain post-TBI and microglia are known to release cytokine, and direct exposure of astrocytes to these molecules are known to stimulate cell swelling, we examined whether glutamate or cytokines have any additive effect on trauma-induced cell swelling. Exposure of cultured astrocytes to trauma caused cell swelling, and such swelling was potentiated by the exposure of traumatized astrocytes to glutamate and cytokines. Conditioned medium (CM) from traumatized astrocytes had no effect on neuronal swelling post-trauma, while CM from traumatized neurons and microglia potentiated the effect of trauma on astrocyte swelling. Further, trauma significantly increased the Na–K–Cl co-transporter (NKCC) activity in neurons, and that inhibition of NKCC activity diminished the trauma-induced neuronal swelling. Our results indicate that a differential sensitivity to trauma-induced cell swelling exists in neural cells and that neurons and microglia are likely to be involved in the potentiation of the astrocyte swelling post-trauma.  相似文献   

7.
In brain, the serine protease tissue plasminogen activator (tPA) and its endogenous inhibitor plasminogen activator inhibitor-1 (PAI-1) have been implicated in the regulation of various neurophysiological and pathological responses. In this study, we investigated the differential role of neurons and astrocytes in the regulation of tPA/PAI-1 activity in ischemic brain. The activity of tPA peaked transiently and then decreased in cortex and striatum along with delayed induction of PAI-1 in the inflammatory stage after MCAO/reperfusion injury. In cultured primary cells, glutamate stimulation increased tPA activity in neurons but not in other cells such as microglia and astrocytes. With LPS stimulation, a model of neuroinflammatory insults, robust PAI-1 induction was observed in astrocytes but not in neurons and microglia. The upregulation of PAI-1 by LPS in astrocytes was also verified by RT-PCR analysis as well as PAI-1 promoter reporter assay. Lastly, we checked the effects of hypoxia on tPA/PAI-1 activity. Hypoxia increased tPA release from neurons without effects on microglia, while the activity of tPA in astrocyte was decreased consistent with increased PAI-1 activity in astrocyte. Taken together, the results from the present study suggest that neurons are the major source of tPA and that the glutamate-induced stimulated release is mainly governed by neurons in the acute phase. In contrast, the massive up-regulation of PAI-1 in astrocytes during subchronic and chronic inflammatory conditions, leads to decreased tPA activity in the later stages of MCAO. Differential regulation of tPA and PAI-1 in neurons, astrocytes and microglia suggest more attention is required to understand the role of local tPA activity in the vicinity of individual cell types.  相似文献   

8.
In order to compare the incorporation of several saturated fatty acids into the brain, radioactive palmitic, stearic and lignoceric acids were injected into mice. The radioactivity was measured in lipids from isolated neurons, astrocytes and myelin.Our data indicate that specific radioactivity of lignoceric acid after its injection was very high in neurons and astrocytes when comparing with serum lignoceric acid specific radioactivity: evidence of the uptake of exogenous lignoceric acid by brain cells and myelin is provided.The incorporation of exogenous palmitic acid into brain cells was much higher than the incorporation of exogenous stearic acid. We hypothesize that exogenous saturated fatty acid uptake is selective in relation with the acyl chain length and the intracerebral synthesis.  相似文献   

9.
Arachidonic acid (AA) plays a fundamental role in the function of all cells. Metabolites of AA contribute to inflammation as well as for resolving inflammation. Although AA-derived metabolites exhibit well-substantiated bioactivity, it is not known whether AA regulates inflammatory responses independent of its metabolites. With the recent discovery that saturated fatty acids activate toll-like receptor-4 (TLR4), we tested the hypothesis that AA directly regulates inflammatory responses through modulating the activity of TLR4. In cultured cardiomyocytes and macrophages, we found that AA prevents saturated fatty acid-induced TLR4 complex formation with accessory proteins and the induction of proinflammatory cytokines. We discovered that AA directly binds to TLR4 co-receptor, myeloid differentiation factor 2 (MD2) and prevents saturated fatty acids from activating TLR4 pro-inflammatory signaling pathway. Similarly, AA reduced lipopolysaccharide (LPS)-induced inflammation in macrophages and septic death in mice through binding to MD2. In high-fat diet mouse model of obesity and LPS-induced model of acute lung injury, both mediating inflammatory responses through TLR4, treatment with AA prevented MD2/TLR4 dimerization, induction of inflammatory factors, and tissue injuries. In summary, we have discovered that AA interacts with MD2 and disrupts TLR4 activation by LPS and saturated fatty acids. These findings provide experimental evidence for a direct mechanism of AA-induced regulation of inflammation.  相似文献   

10.
The purpose of this study was to investigate the mechanism of fatty acid-induced regulation of melanogenesis. An apparent regulatory effect on melanogenesis was observed when cultured B16F10 melanoma cells were incubated with fatty acids, i.e., linoleic acid (unsaturated, C18:2) decreased melanin synthesis while palmitic acid (saturated, C16:0) increased it. However, mRNA levels of the melanogenic enzymes, tyrosinase, tyrosinase-related protein 1 (TRP1), and tyrosinase-related protein 2 (TRP2), were not altered. Regarding protein levels of these enzymes, the amount of tyrosinase was decreased by linoleic acid and increased by palmitic acid, whereas the amounts of TRP1 and TRP2 did not change after incubation with fatty acids. Pulse-chase assay by [35S]methionine metabolic labeling revealed that neither linoleic acid nor palmitic acid altered the synthesis of tyrosinase. Further, it was shown that linoleic acid accelerated, while palmitic acid decelerated, the proteolytic degradation of tyrosinase. These results suggest that modification of proteolytic degradation of tyrosinase is involved in regulatory effects of fatty acids on melanogenesis in cultured melanoma cells.  相似文献   

11.
Effects of palmitic, stearic, oleic, and linoleic acid on mitogen-induced DNA synthesis, on production of IL-1β, IL-2, IFN-gamma, and TNF-α, and on IL-2R expression were determined in human peripheral lymphocytes. Free fatty acids (FFA) were added over a wide range of concentrations to cells cultured under serum free conditions with fatty acid free albumin. DNA synthesis was stimulated by low and inhibited by high FFA concentrations. Physiologica concentrations were stimulatory, except for linoleic acid. Cytokine production became affected by all FFA tested. Palmitic acid enhanced the release of IFN-gamma at concentrations that diminished TNF-α production. Saturated fatty acids were significantly more potent than unsaturated fatty acids in affecting cytokine production. IFN-gamma secretion was significantly more stimulated or inhibited by the various FFA compared with the other cytokines. IL-2R expression correlated with the production of IL-2. When tested in combination, stimulatory as well as inhibitory effects of the individual FFA became attenuated. It is suggested that palmitic, stearic, oleic, and linoleic acid are physiological regulators of DNA synthesis and cytokine release in human peripheral lymphocytes. Modulation of FFA ratios may be an effective means for the fine tuning of the immune system. As secretory mechanisms of cytokines appear to exhibit substrate specificity for FFA, the release of individual cytokines may be selectively influenced by FFA. © 1994 Wiley-Liss, Inc.  相似文献   

12.
Oils enriched in certain polyunsaturated fatty acids suppress joint pain and swelling in rheumatoid arthritis patients with active synovitis. Because T lymphocyte activation is important for propagation of joint tissue injury in patients with rheumatoid arthritis, we examined the effects of fatty acids added in vitro on proliferation of human T lymphocytes stimulated with monoclonal antibodies to CD3 and CD4. Unsaturated fatty acids reduced T cell proliferation in a dose dependent manner (dihomogammalinolenic acid > gammalinolenic acid > eicosapentaenoic acid > arachidonic acid). Removal of fatty acids from cultures before cell stimulation did not change the effects, but addition of fatty acids after cell stimulation failed to reduce T cell responses. The saturated palmitic acid did not influence T cell growth. These studies indicate that small changes in cellular fatty acids can have profound effects on early events in T cell signaling and on T cell function.  相似文献   

13.
Steatohepatitis occurs in up to 20% of patients with fatty liver disease and leads to its primary disease outcomes, including fibrosis, cirrhosis, and increased risk of hepatocellular carcinoma. Mechanisms that mediate this inflammation are of major interest. We previously showed that overload of saturated fatty acids, such as that which occurs with metabolic syndrome, induced sphingosine kinase 1 (SphK1), an enzyme that generates sphingosine-1-phosphate (S1P). While data suggest beneficial roles for S1P in some contexts, we hypothesized that it may promote hepatic inflammation in the context of obesity. Consistent with this, we observed 2-fold elevation of this enzyme in livers from humans with nonalcoholic fatty liver disease and also in mice with high saturated fat feeding, which recapitulated the human disease. Mice exhibited activation of NFκB, elevated cytokine production, and immune cell infiltration. Importantly, SphK1-null mice were protected from these outcomes. Studies in cultured cells demonstrated saturated fatty acid induction of SphK1 message, protein, and activity, and also a requirement of the enzyme for NFκB signaling and increased mRNA encoding TNFα and MCP1. Moreover, saturated fat-induced NFκB signaling and elevation of TNFα and MCP1 mRNA in HepG2 cells was blocked by targeted knockdown of S1P receptor 1, supporting a role for this lipid signaling pathway in inflammation in nonalcoholic fatty liver disease.  相似文献   

14.
15.
The effects of arachidonic acid on glutamate and gamma-aminobutyric acid (GABA) uptake were studied in primary cultures of astrocytes and neurons prepared from rat cerebral cortex. The uptake rates of glutamate and GABA in astrocytic cultures were 10.4 nmol/mg protein/min and 0.125 nmol/mg protein/min, respectively. The uptake rates of glutamate and GABA in neuronal cultures were 3.37 nmol/mg protein/min and 1.53 nmol/mg protein/min. Arachidonic acid inhibited glutamate uptake in both astrocytes and neurons. The inhibitory effect was observed within 10 min of incubation with arachidonic acid and reached approximately 80% within 120 min in both types of culture. The arachidonic acid effect was not only time-dependent, but also dose-related. Arachidonic acid, at concentrations of 0.015 and 0.03 mumol/mg protein, significantly inhibited glutamate uptake in neurons, whereas 20 times higher concentrations were required for astrocytes. The effects of arachidonic acid were not as deleterious on GABA uptake as on glutamate uptake in both astrocytes and neurons. In astrocytes, GABA uptake was not affected by any of the doses of arachidonic acid studied (0.015-0.6 mumol/mg protein). In neuronal cultures, GABA uptake was inhibited, but not to the same degree observed with glutamate uptake. Lower doses of arachidonic acid (0.03 and 0.015 mumol/mg protein) did not affect neuronal GABA uptake. Other polyunsaturated fatty acids, such as docosahexaenoic acid, affected amino acid uptake in a manner similar to arachidonic acid in both astrocytes and neurons. However, saturated fatty acids, such as palmitic acid, exerted no such effect. The significance of the arachidonic acid-induced inhibition of neurotransmitter uptake in cultured brain cells in various pathological states is discussed.  相似文献   

16.
17.
We describe a method for measuring the release of fatty acids from endogenous substrates of human platelet homogenates and membranes. The method depends on the availability of lipids whose fatty acids are odd-chained and therefore suitable as internal reference compounds that, at the time of lipid extraction, can be added to an incubation to permit subsequent quantification of the content of free fatty acids or fatty acids esterified to specific lipids. We found four types of lipolytic activities in human platelets. In homogenates at pH 4.0 a triglyceride lipase operated as shown by the synchrony of triglyceride degradation and release of glycerol and those fatty acids that are the predominant constituents of triglycerides. However, enough arachidonic acid was released at this pH level to suggest some phospholipid breakdown, since triglycerides hold relatively small amounts of this acid. With membranous preparations, in the alkaline pH range there were two peaks of fatty acid release with accompanying degradation of phospholipids. At pH 8.5, where release of the saturated acids, palmitic and stearic, predominated, their sum was 3.5 times that of arachidonic acid. At pH 9.5 the release of palmitic and stearic acids was only slightly below their peak values; however, the release of arachidonic acid nearly equaled the sum of the saturated acids. Linoleic acid was not released in representative amounts by those reactions that released arachidonic acid, despite the overwhelming propensity of both to be esterified at the 2-position of phospholipids. Pertinently, the choline phospholipids are linoleic-rich and the non-choline phospholipids linoleic-poor, while both have a generous endowment of arachidonic acid. With this in mind, we raise the possibility that the phospholipase A2 of human platelets is an endoenzyme because of its tendency to act on those phospholipids that are thought to comprise the inner layer of the cell membrane.  相似文献   

18.
Gap junctions serve as intercellular conduits that allow for the direct transfer of small molecular weight molecules (up to 1 kDa) including ions involved in cellular excitability, metabolic precursors, and second messengers. The observation of extensive intercellular coupling and large numbers of gap junctions in the central nervous system (CNS) suggests a syncytium-like organization of glial compartments. Inflammation is a hallmark of various CNS diseases such as bacterial and viral infections, multiple sclerosis, Alzheimer's disease, and cerebral ischemia. A general consequence of brain inflammation is reactive gliosis typified by astrocyte hypertrophy and proliferation of astrocytes and microglia. Changes in gap junction intercellular communication as reflected by alterations in dye coupling and connexin expression have been associated with numerous CNS inflammatory diseases, which may have dramatic implications on the survival of neuronal and glial populations in the context of neuroinflammation. A review of the effects of inflammatory products on glia-glia gap junctional communication and glial glutamate release is presented. In addition, the hypothesis of a "syncytial switch" based upon differential regulation of gap junction expression in astrocytes and microglia during normal CNS homeostasis and neuroinflammation is proposed.  相似文献   

19.
Macrophages in adipose tissue contribute to inflammation and the development of insulin resistance in obesity. Exposure of macrophages to saturated fatty acids alters cell metabolism and activates pro-inflammatory signaling. How fatty acids influence macrophage mitochondrial dynamics is unclear. We investigated the mechanism of palmitate-induced mitochondrial fragmentation and its impact on inflammatory responses in primary human macrophages. Fatty acids, such as palmitate, caused mitochondrial fragmentation in human macrophages. Increased mitochondrial fragmentation was also observed in peritoneal macrophages from hyperlipidemic apolipoprotein E knockout mice. Fatty acid-induced mitochondrial fragmentation was independent of the fatty acid chain saturation and required dynamin-related protein 1 (DRP1). Mechanistically, mitochondrial fragmentation was regulated by incorporation of palmitate into mitochondrial phospholipids and their precursors. Palmitate-induced endoplasmic reticulum stress and loss of mitochondrial membrane potential did not contribute to mitochondrial fragmentation. Macrophages treated with palmitate maintained intact mitochondrial respiration and ATP levels. Pharmacological or genetic inhibition of DRP1 enhanced palmitate-induced mitochondrial ROS production, c-Jun phosphorylation, and inflammatory cytokine expression. Our results indicate that mitochondrial fragmentation is a protective mechanism attenuating inflammatory responses induced by palmitate in human macrophages.  相似文献   

20.
The impact of dietary fatty acids in atherosclerosis development may be partially attributed to their effect on macrophage cholesterol homeostasis. This process is the result of interplay between cholesterol uptake and efflux, which are permeated by inflammation and oxidative stress. Although saturated fatty acids (SAFAs) do not influence cholesterol efflux, they trigger endoplasmic reticulum stress, which culminates in increased lectin-like oxidized LDL (oxLDL) receptor (LOX1) expression and, consequently, oxLDL uptake, leading to apoptosis. Unsaturated fatty acids prevent most SAFAs-mediated deleterious effects and are generally associated with reduced cholesterol efflux, although α-linolenic acid increases cholesterol export. Trans fatty acids increase macrophage cholesterol content by reducing ABCA-1 expression, leading to strong atherosclerotic plaque formation. As isomers of conjugated linoleic acid (CLAs) are strong PPAR gamma ligands, they induce cluster of differentiation (CD36) expression, increasing intracellular cholesterol content. Considering the multiple effects of fatty acids on intracellular signaling pathways, the purpose of this review is to address the role of dietary fat in several mechanisms that control macrophage lipid content, which can determine the fate of atherosclerotic lesions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号