共查询到20条相似文献,搜索用时 0 毫秒
1.
We model the spatial dynamics of an open population of organisms that disperse solely through advection in order to understand responses to multiscale environmental variability. We show that the distance over which a population responds to a localized perturbation, called the response length, can be characterized as an organisms average lifetime dispersal distance, unless there is strong density‐dependence in demographic or dispersal rates. Continuous spatial fluctuations in demographic rates at scales smaller than the response length will be largely averaged in the population distribution, whereas those in per capita emigration rates will be strongly tracked. We illustrate these results using a parameterized example to show how responses to environmental variability may differ in streams with different average current velocities. Our model suggests an approach to linking local dynamics dominated by dispersal processes to larger‐scale dynamics dominated by births and deaths. 相似文献
2.
Freshwaters receive more than water from their catchments, including a large amount of materials and biologically available energy, referred to as cross‐ecosystem resource subsidies. The passive flows of energy such as leaf litter and terrestrial invertebrate inputs, as well as dissolved organic carbon, are donor‐controlled, whereas other flows, such as between fish and fish‐eating birds, have more directly coupled feedbacks. There are also flows upstream or to the terrestrial environment in the form of adult aquatic insects, salmon carcasses and particulate carbon through overbank flooding, as well as directed foraging activities. Hypotheses about the effects of flux rates, timing, quality and physical structure of such resource subsidies on the responses of consumers have been experimentally tested at many trophic levels. Many freshwater and terrestrial consumers depend on these subsidies for at least part of their life cycle, and timing of inputs can affect growth. Developing more quantitative relations between the population and community responses across gradients of cross‐ecosystem resource subsidy input rates will require exploring the shape of the relations, as well as the effects of quality and timing on responses. The stage is now set to consider how resource subsidies might affect the stability of communities and processes such as the strength of trophic cascades. The high degree of connectivity between the land and water are essential to biodiversity conservation and to ensuring that critical aquatic ecosystem services are sustained. The management of riparian areas is a key to the security of these values. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
3.
Migration is ubiquitous and can strongly shape food webs and ecosystems. Less familiar, however, is that the majority of life cycle, seasonal and diel migrations in nature are partial migrations: only a fraction of the population migrates while the other individuals remain in their resident ecosystem. Here, we demonstrate different impacts of partial migration rendering it fundamental to our understanding of the significance of migration for food web and ecosystem dynamics. First, partial migration affects the spatiotemporal distribution of individuals and the food web and ecosystem-level processes they drive differently than expected under full migration. Second, whether an individual migrates or not is regularly correlated with morphological, physiological, and/or behavioural traits that shape its food-web and ecosystem-level impacts. Third, food web and ecosystem dynamics can drive the fraction of the population migrating, enabling the potential for feedbacks between the causes and consequences of migration within and across ecosystems. These impacts, individually and in combination, can yield unintuitive effects of migration and drive the dynamics, diversity and functions of ecosystems. By presenting the first full integration of partial migration and trophic (meta-)community and (meta-)ecosystem ecology, we provide a roadmap for studying how migration affects and is affected by ecosystem dynamics in a changing world. 相似文献
4.
Spatial environmental heterogeneity coupled with dispersal can promote ecological persistence of diverse metacommunities. Does this premise hold when metacommunities evolve? Using a two‐resource competition model, we studied the evolution of resource‐uptake specialisation as a function of resource type (substitutable to essential) and shape of the trade‐off between resource uptake affinities (generalist‐ to specialist‐favouring). In spatially homogeneous environments, evolutionarily stable coexistence of consumers is only possible for sufficiently substitutable resources and specialist‐favouring trade‐offs. Remarkably, these same conditions yield comparatively low diversity in heterogeneous environments, because they promote sympatric evolution of two opposite resource specialists that, together, monopolise the two resources everywhere. Consumer diversity is instead maximised for intermediate trade‐offs and clearly substitutable or clearly essential resources, where evolved metacommunities are characterised by contrasting selection regimes. Taken together, our results present new insights into resource‐competition‐mediated evolutionarily stable diversity in homogeneous and heterogeneous environments, which should be applicable to a wide range of systems. 相似文献
5.
Kaj Sand-Jensen Karsten Andersen Tine Andersen 《International Review of Hydrobiology》1999,84(5):497-508
Streams are physically perturbed habitats with high demands on the dispersal and recruitment to maintain plant populations. Yet, little is known about these important demographic processes for stream plants. Therefore, we studied the monospecific vegetation of Callitriche cophocarpa in a small Danish lowland stream to determine: 1) the importance of drifting shoots and seeds for recruitment of plants, and 2) the influence of water flow, light availability and patch size on recruitment, growth and mortality processes. We found that the majority (about 90%) of new colonising patches of plant stands derived from drifting shoots being caught around protruding stones, while few developed from seeds. Many new patches were lost in the flowing water before roots became well established. Flow exposure of the patches resulted in the main growth taking place in the downstream direction. Combined areal cover of Callitriche patches on the stream bottom reached an upper limit of about 70%, probably because areal expansion above this threshold was constrained by strong shear forces and coarse substrata developing in the flow channels between the patches. We discuss why efficient shoot dispersal and vegetative growth documented here for Callitriche is an optimal plant strategy in flow-perturbed streams in contrast to the production of numerous small seeds but limited vegetative spread among ruderal plants in perturbed habitats on land. 相似文献
6.
7.
Spatial genetic structure (SGS) of plants results from the nonrandom distribution of related individuals. SGS provides information on gene flow and spatial patterns of genetic diversity within populations. Seed dispersal creates the spatial template for plant distribution. Thus, in zoochorous plants, dispersal mode and disperser behaviour might have a strong impact on SGS. However, many studies only report the taxonomic group of seed dispersers, without further details. The recent increase in studies on SGS provides the opportunity to review findings and test for the influence of dispersal mode, taxonomic affiliation of dispersers and their behaviour. We compared the proportions of studies with SGS among groups and tested for differences in strength of SGS using Sp statistics. The presence of SGS differed among taxonomic groups, with reduced presence in plants dispersed by birds. Strength of SGS was instead significantly influenced by the behaviour of seed dispersal vectors, with higher SGS in plant species dispersed by animals with behavioural traits that result in short seed dispersal distances. We observed high variance in the strength of SGS in plants dispersed by animals that actively or passively accumulate seeds. Additionally, we found SGS was also affected by pollination and marker type used. Our study highlights the importance of vector behaviour on SGS even in the presence of variance created by other factors. Thus, more detailed information on the behaviour of seed dispersers would contribute to better understand which factors shape the spatial scale of gene flow in animal‐dispersed plant species. 相似文献
8.
The idiosyncratic behaviours of seed dispersers are important contributors to plant spatial associations and genetic structures. In this study, we used a combination of field, molecular and spatial studies to examine the connections between seed dispersal and the spatial and genetic structures of a dominant neotropical palm Attalea phalerata. Field observation and genetic parentage analysis both indicated that the majority of A. phalerata seeds were dispersed locally over short distances (<30 m from the maternal tree). Spatial and genetic structures between adults and seedlings were consistent with localized and short-distance seed dispersal. Dispersal contributed to spatial associations among maternal sibling seedlings and strong spatial and genetic structures in both seedlings dispersed near (<10 m) and away (>10 m) from maternal palms. Seedlings were also spatially aggregated with juveniles. These patterns are probably associated with the dispersal of seeds by rodents and the survival of recruits at specific microsites or neighbourhoods over successive fruiting periods. Our cross-cohort analyses found palms in older cohorts and cohort pairs were associated with a lower proportion of offspring and sibling neighbours and exhibited weaker spatial and genetic structures. Such patterns are consistent with increased distance- and density-dependent mortality over time among palms dispersed near maternal palms or siblings. The integrative approaches used for this study allowed us to infer the importance of seed dispersal activities in maintaining the aggregated distribution and significant genetic structures among A. phalerata palms. We further conclude that distance- and density-dependent mortality is a key postdispersal process regulating this palm population. 相似文献
9.
物种共存机制是群落生态学研究的核心问题之一,但以成对物种间直接相互作用为主的传统共存理论,并未在实际群落中得到普遍证实。近年来,有研究表明,高阶相互作用,即一个物种对另一个物种的直接作用强度受到其他物种的间接影响,在群落竞争过程中的重要性不断得到发展。目前,对高阶相互作用的理论研究还主要集中在非空间理论模型。事实上,群落中个体的空间分布和扩散模式等对种群动态的影响均至关重要。故考虑空间因素,以三物种为例构建空间显式的群落动态模拟,通过引入不同的物种扩散模式,研究高阶相互作用对群落物种共存结果的影响。研究表明:(1)高阶相互作用可以促进也可能抑制物种共存,具体共存结果取决于高阶相互作用的方向、强度和分类;(2)当全部高阶相互作用都存在,且取值为正时,物种共存位置会发生偏移,原本生态位分化下共存的区域不再共存,而在生态位重叠度较高的区域,物种可以在更大范围的适合度差异下共存;(3)扩散模式对高阶相互作用的上述调节机制有一定的影响,且无论正高阶还是负高阶,当种群趋于局部扩散时,高阶相互作用的正向及负向调节效果均有所减弱。以上结论强调了在理论模型和实际保护工作中考虑相互作用网络的重要性,有助于进一步理解物种共存机制,能够为保护生物多样性提供理论依据。 相似文献
10.
The main selective force driving floral evolution and diversity is plant–pollinator interactions. Pollinators use floral signals and indirect cues to assess flower reward, and the ensuing flower choice has major implications for plant fitness. While many pollinator behaviors have been described, the impact of parasites on pollinator foraging decisions and plant–pollinator interactions have been largely overlooked. Growing evidence of the transmission of parasites through the shared‐use of flowers by pollinators demonstrate the importance of behavioral immunity (altered behaviors that enhance parasite resistance) to pollinator health. During foraging bouts, pollinators can protect themselves against parasites through self‐medication, disease avoidance, and grooming. Recent studies have documented immune behaviors in foraging pollinators, as well as the impacts of such behaviors on flower visitation. Because pollinator parasites can affect flower choice and pollen dispersal, they may ultimately impact flower fitness. Here, we discuss how pollinator immune behaviors and floral traits may affect the presence and transmission of pollinator parasites, as well as how pollinator parasites, through these immune behaviors, can impact plant–pollinator interactions. We further discuss how pollinator immune behaviors can impact plant fitness, and how floral traits may adapt to optimize plant fitness in response to pollinator parasites. We propose future research directions to assess the role of pollinator parasites in plant–pollinator interactions and evolution, and we propose better integration of the role of pollinator parasites into research related to pollinator optimal foraging theory, floral diversity and agricultural practices. 相似文献
11.
Recent research has highlighted interdependencies between dispersal and other life‐history traits, i.e. dispersal syndromes, thereby revealing constraints on the evolution of dispersal and opportunities for improved ability to predict dispersal by considering suites of dispersal‐related traits. This review adds to the growing list of life‐history traits linked to spatial dispersal by emphasising the interdependence between dispersal through space and time, i.e. life‐history diversity that distributes individuals into separate reproductive events. We reviewed the literature that has simultaneously investigated spatial and temporal dispersal to examine the prediction that traits of these two dispersal strategies are negatively correlated. Our results suggest that negative covariation is widely anticipated from theory. Empirical studies often reported evidence of weak negative covariation, although more complicated patterns were also evident, including across levels of biological organisation. Existing literature has largely focused on plants with dormancy capability, one or two phases of the dispersal process (emigration and/or transfer) and a single level of biological organisation (theory: individual; empirical: species). We highlight patterns of covariation across levels of organisation and conclude with a discussion of the consequences of dispersal through space and time and future research areas that should improve our understanding of dispersal‐related life‐history syndromes. 相似文献
12.
S. LION 《Journal of evolutionary biology》2010,23(4):866-874
I present two ecological models for the evolution of reproductive effort in viscous populations with empty sites. In contrast with previous studies, I show that limited dispersal needs not have a positive effect on the evolutionarily stable allocation of resources to fecundity versus survival. Rather, depending on the feedback between the trait and the population dynamics, population viscosity may have no effect or even lead to a decrease in the evolutionarily stable reproductive effort when individuals can degrade their environment during their lifetime. I show that the different evolutionary outcomes can be explained by the asymmetry in the level of kin competition resulting from investing into juveniles or into adults. 相似文献
13.
We investigated patterns of intergroup relationships in western black-and-white colobus, Colobus polykomos, in Taï National Park, Côte d'Ivoire, between 1993 and 1999. They live in one-male multifemale units, and demonstrate male dispersal and occasional dispersal by females. Solitary males and all-male bands are absent or very rare. Our aim was to investigate the function of female and male aggression during intergroup interactions. The species is particularly interesting because, in contrast to predictions from socioecological models, female aggression occurs during intergroup interactions in combination with female dispersal. Home ranges of neighboring groups overlapped considerably and groups lacked an area of exclusive access. Intergroup interactions occurred once every 6.6 observation days. Encounters were either peaceful (12%), or involved displays and threats (25%) or chases and fights (63%). Females interacted in 74% and males in 98% of aggressive intergroup encounters. We found little to no indication that male and female aggression correlated with the presence of food, importance of a location, or presence of infants or receptive females. However, females were more often aggressive during the months when the group depended strongly on seeds from Pentaclethra macrophylla. We also observed forays by males to other groups. Forays occurred on average once every 20 observation days. In 75% of the forays, the intruding male chased members of the target group. In 25% of the forays 1–3 females joined their male but females never attacked the target group. Our main study group was the target of such forays significantly more often when young infants were present in the group than when not. We conclude that female aggression between groups was related to food procurement and that male forays might be related to infanticide. 相似文献
14.
15.
Plant-insect interactions are key model systems to assess how some species affect the distribution, the abundance, and the evolution of others. Tree reproductive structures represent a critical resource for many insect species, which can be likely drivers of demography, spatial distribution, and trait diversification of plants. In this review, we present the ecological implications of predispersal herbivory on tree reproductive structures by insects (PIHR) in forest ecosystems. Both insect's and tree's perspectives are addressed with an emphasis on how spatiotemporal variation and unpredictability in seed availability can shape such particular plant-animal interactions. Reproductive structure insects show strong trophic specialization and guild diversification. Insects evolved host selection and spatiotemporal dispersal strategies in response to variable and unpredictable abundance of reproductive structures in both space and time. If PIHR patterns have been well documented in numerous systems, evidences of the subsequent demographic and evolutionary impacts on tree populations are still constrained by time-scale challenges of experimenting on such long-lived organisms, and modeling approaches of tree dynamics rarely consider PIHR when including biotic interactions in their processes. We suggest that spatially explicit and mechanistic approaches of the interactions between individual tree fecundity and in sect dynamics will clarify predictions of the demogenetic implications of PIHR in tree populations. In a global change context, further experimental and theoretical contributions to the likelihood of life-cycle disruptions between plants and their specialized herbivores, and to how these changes may gen erate novel dynamic patterns in each partner of the interaction are increasingly critical. 相似文献
16.
J. A. BENNETT D. R. GILLESPIE J. L. SHIPP S. L. VANLAERHOVEN 《Ecological Entomology》2009,34(1):58-65
Abstract 1. Competing foragers are affected by the distribution of resources, but can also affect resource distribution. Intraguild predators may affect the distribution of both the shared prey and the intraguild prey, which are also their competitors. 2. Variation in foraging strategies and their effects on resource distributions may influence the outcome of intraguild interactions between an intraguild predator and its intraguild prey. This was tested using whitefly Trialeurodes vaporariorum as the shared resource, the parasitoid Encarsia formosa as the intraguild prey, and Dicyphus hesperus, an omnivore, as the intraguild predator on tomato (Lycopersicon esculentum) and mullein (Verbascum thapsus) plants, within enclosures in a greenhouse. Treatments were established with and without the intraguild predator and at high and low intraguild prey densities. 3. The interaction between D. hesperus and E. formosa showed significant asymmetry, with D. hesperus populations being unaffected by E. formosa densities, although E. formosa populations were reduced by the inclusion of D. hesperus. However, the inclusion of D. hesperus diminished density‐dependent effects limiting E. formosa populations at high release densities. 4. Dicyphus hesperus reduced the average patch size and the proportion of patches occupied by whitefly. Increasing the release rate of E. formosa had no effect on any distributional measure. Based upon the foraging ecology of both species, the foraging activities of D. hesperus appear to have modified the patch distribution so that its foraging strategy becomes more successful than that of E. formosa. These properties may provide an important mechanism determining the outcome of species interactions. 相似文献
17.
Timothée Poisot James D. Bever Peter H. Thrall Michael E. Hochberg 《Ecology and evolution》2014,4(19):3841-3850
Protective mutualisms, where a symbiont reduces the negative effects of another species on a shared host, represent a common type of species interaction in natural communities, yet it is still unclear what ecological conditions might favor their emergence. Studies suggest that the initial evolution of protective mutualists might involve closely related pathogenic variants with similar life histories, but different competitive abilities and impacts on host fitness. We derive a model to evaluate this hypothesis and show that, in general, a protective variant cannot spread from rarity or exclude a more pathogenic strain. While the conditions allowing mutualist invasion are more likely with increased environmental productivity, they still depend on initial densities in the invaded patch exceeding a threshold, highlighting the likely importance of spatial structure and demographic stochasticity. Using a numerical simulation approach, we show that regional coexistence is in fact possible in an explicitly spatial system and that, under some circumstances, the mutualist population can exclude the enemy. More broadly, the establishment of protective mutualists may be favored when there are other life‐history differences from more pathogenic symbionts, such as vertical transmission or additional direct benefits to hosts. 相似文献
18.
Hao Xu Gaylord Desurmont Thomas Degen Guoxin Zhou Diane Laplanche Luka Henryk Ted C.J. Turlings 《Plant, cell & environment》2017,40(3):330-339
Herbivore‐induced plant volatiles (HIPVs) are important cues for female parasitic wasps to find hosts. Here, we investigated the possibility that HIPVs may also serve parasitoids as cues to locate mates. To test this, the odour preferences of four braconid wasps – the gregarious parasitoid Cotesia glomerata (L.) and the solitary parasitoids Cotesia marginiventris (Cresson), Microplitis rufiventris Kokujev and Microplitis mediator (Haliday) – were studied in olfactometers. Each species showed attraction to pheromones but in somewhat different ways. Males of the two Cotesia species were attracted to virgin females, whereas females of M. rufiventris were attracted to virgin males. Male and female M. mediator exhibited attraction to both sexes. Importantly, female and male wasps of all four species were strongly attracted by HIPVs, independent of mating status. In most cases, male wasps were also attracted to intact plants. The wasps preferred the combination of HIPVs and pheromones over plant odours alone, except M. mediator, which appears to mainly use HIPVs for mate location. We discuss the ecological contexts in which the combined use of pheromones and HIPVs by parasitoids can be expected. To our knowledge, this is the first study to show that braconid parasitoids use HIPVs and pheromones in combination to locate mates. 相似文献
19.
Hind SR Pulliam SE Veronese P Shantharaj D Nazir A Jacobs NS Stratmann JW 《The Plant journal : for cell and molecular biology》2011,65(3):480-491
The COP9 signalosome (CSN) is a multi‐protein complex that regulates the activities of cullin‐RING E3 ubiquitin ligases (CRLs). CRLs ubiquitinate proteins in order to target them for proteasomal degradation. The CSN is required for proper plant development. Here we show that the CSN also has a profound effect on plant defense responses. Silencing of genes for CSN subunits in tomato plants resulted in a mild morphological phenotype and reduced expression of wound‐responsive genes in response to mechanical wounding, attack by Manduca sexta larvae, and Prosystemin over‐expression. In contrast, expression of pathogenesis‐related genes was increased in a stimulus‐independent manner in these plants. The reduced wound response in CSN‐silenced plants corresponded with reduced synthesis of jasmonic acid (JA), but levels of salicylic acid (SA) were unaltered. As a consequence, these plants exhibited reduced resistance against herbivorous M. sexta larvae and the necrotrophic fungal pathogen Botrytis cinerea. In contrast, susceptibility to tobacco mosaic virus (TMV) was not altered in CSN‐silenced plants. These data demonstrate that the CSN orchestrates not only plant development but also JA‐dependent plant defense responses. 相似文献
20.
In a previous study, a model of landscape heterogeneity was developed and applied to a spatially structured wild rabbit (Oryctolagus cuniculus) population. That study showed clearly the influence of resource heterogeneity on connectivity levels. The simulation study was based on female movements and used population genetic validation data appropriate for a female study. Most models assume that males and females will exhibit similar patterns, although this has rarely been tested. In the current study we extend the analysis to consider differences between female and male connectivity in the same spatially structured pest system. Amplified fragment length polymorphism (AFLP) markers were screened on the same samples used previously for mtDNA analysis. The mtDNA data were used to validate female results, and AFLP data were used to validate combined male and female results. Connectivity patterns from the two simulations (female, and combined male and female) connectivity patterns showed no association. However, each was concordant with appropriate validation data, showing highly significant associations between pairwise population connectivity and the genetic data. A relative connectivity metric for the combined simulation was regressed against the mean of pairwise ΦST values, with almost 70% of the variation explained by a linear model. Demonstrating differential effects of habitat heterogeneity on male and female connectivity provides further evidence that spatial resource heterogeneity impacts on connectivity. Understanding differences in population connectivity will allow improved predictions of disease spread, local extinctions and recolonizations. Furthermore, modelling such differences in pest systems will allow management plans to be better targeted, for example by strategically introducing diseases for control purposes into populations which exhibit high male connectivity to aid spread, but low female connectivity to inhibit recolonization potential after control. 相似文献